Properties

Label 4275.2.i
Level $4275$
Weight $2$
Character orbit 4275.i
Rep. character $\chi_{4275}(1426,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $684$
Sturm bound $1200$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(1200\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4275, [\chi])\).

Total New Old
Modular forms 1224 684 540
Cusp forms 1176 684 492
Eisenstein series 48 0 48

Decomposition of \(S_{2}^{\mathrm{new}}(4275, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(4275, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4275, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(855, [\chi])\)\(^{\oplus 2}\)