Defining parameters
Level: | \( N \) | \(=\) | \( 432 = 2^{4} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 432.y (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 144 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(432, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 312 | 104 | 208 |
Cusp forms | 264 | 88 | 176 |
Eisenstein series | 48 | 16 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(432, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
432.2.y.a | $4$ | $3.450$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(0\) | \(-2\) | \(-12\) | \(q+(-1-\zeta_{12}+\zeta_{12}^{2})q^{2}+(2\zeta_{12}-2\zeta_{12}^{3})q^{4}+\cdots\) |
432.2.y.b | $4$ | $3.450$ | \(\Q(\zeta_{12})\) | None | \(2\) | \(0\) | \(-4\) | \(6\) | \(q+(-\zeta_{12}+\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}-2\zeta_{12}q^{4}+\cdots\) |
432.2.y.c | $4$ | $3.450$ | \(\Q(\zeta_{12})\) | None | \(2\) | \(0\) | \(8\) | \(-6\) | \(q+(-\zeta_{12}+\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}-2\zeta_{12}q^{4}+\cdots\) |
432.2.y.d | $4$ | $3.450$ | \(\Q(\zeta_{12})\) | None | \(4\) | \(0\) | \(4\) | \(12\) | \(q+(1+\zeta_{12}^{3})q^{2}+2\zeta_{12}^{3}q^{4}+(1+\zeta_{12}+\cdots)q^{5}+\cdots\) |
432.2.y.e | $72$ | $3.450$ | None | \(-4\) | \(0\) | \(-4\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(432, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(432, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)