Properties

Label 432.2.y
Level $432$
Weight $2$
Character orbit 432.y
Rep. character $\chi_{432}(37,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $88$
Newform subspaces $5$
Sturm bound $144$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.y (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 144 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 5 \)
Sturm bound: \(144\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(432, [\chi])\).

Total New Old
Modular forms 312 104 208
Cusp forms 264 88 176
Eisenstein series 48 16 32

Trace form

\( 88 q + 2 q^{2} - 2 q^{4} + 2 q^{5} + 8 q^{8} + O(q^{10}) \) \( 88 q + 2 q^{2} - 2 q^{4} + 2 q^{5} + 8 q^{8} - 8 q^{10} + 2 q^{11} - 2 q^{13} + 10 q^{14} - 2 q^{16} + 16 q^{17} - 8 q^{19} - 12 q^{20} - 2 q^{22} + 40 q^{26} - 24 q^{28} + 2 q^{29} - 4 q^{31} + 22 q^{32} - 6 q^{34} + 28 q^{35} - 8 q^{37} - 26 q^{38} - 2 q^{40} - 2 q^{43} - 36 q^{44} + 8 q^{46} + 44 q^{47} + 16 q^{49} + 36 q^{50} - 2 q^{52} + 8 q^{53} - 52 q^{56} - 20 q^{58} - 10 q^{59} - 2 q^{61} - 100 q^{62} - 44 q^{64} + 4 q^{65} - 2 q^{67} - 16 q^{68} + 12 q^{70} - 26 q^{74} + 10 q^{76} + 30 q^{77} - 4 q^{79} - 144 q^{80} - 52 q^{82} + 22 q^{83} - 12 q^{85} - 70 q^{86} - 26 q^{88} - 36 q^{91} + 56 q^{92} + 6 q^{94} - 60 q^{95} - 4 q^{97} - 40 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(432, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
432.2.y.a 432.y 144.x $4$ $3.450$ \(\Q(\zeta_{12})\) None 144.2.x.a \(-2\) \(0\) \(-2\) \(-12\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1-\zeta_{12}+\zeta_{12}^{2})q^{2}+(2\zeta_{12}-2\zeta_{12}^{3})q^{4}+\cdots\)
432.2.y.b 432.y 144.x $4$ $3.450$ \(\Q(\zeta_{12})\) None 144.2.x.b \(2\) \(0\) \(-4\) \(6\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\zeta_{12}+\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}-2\zeta_{12}q^{4}+\cdots\)
432.2.y.c 432.y 144.x $4$ $3.450$ \(\Q(\zeta_{12})\) None 144.2.x.b \(2\) \(0\) \(8\) \(-6\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\zeta_{12}+\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}-2\zeta_{12}q^{4}+\cdots\)
432.2.y.d 432.y 144.x $4$ $3.450$ \(\Q(\zeta_{12})\) None 144.2.x.a \(4\) \(0\) \(4\) \(12\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\zeta_{12}^{3})q^{2}+2\zeta_{12}^{3}q^{4}+(1+\zeta_{12}+\cdots)q^{5}+\cdots\)
432.2.y.e 432.y 144.x $72$ $3.450$ None 144.2.x.e \(-4\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(432, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(432, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)