Properties

Label 432.8.i
Level $432$
Weight $8$
Character orbit 432.i
Rep. character $\chi_{432}(145,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $82$
Newform subspaces $6$
Sturm bound $576$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 432.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 6 \)
Sturm bound: \(576\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(432, [\chi])\).

Total New Old
Modular forms 1044 86 958
Cusp forms 972 82 890
Eisenstein series 72 4 68

Trace form

\( 82 q + q^{5} + q^{7} + 7985 q^{11} - q^{13} - 23968 q^{17} + 4 q^{19} - 73003 q^{23} - 578126 q^{25} - 64011 q^{29} + 161287 q^{31} - 872754 q^{35} - 4 q^{37} + 150303 q^{41} + 72079 q^{43} - 1531569 q^{47}+ \cdots + 5296361 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(432, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
432.8.i.a 432.i 9.c $6$ $134.950$ 6.0.\(\cdots\).1 None 18.8.c.a \(0\) \(0\) \(-54\) \(-210\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-18+18\beta _{1}+3\beta _{2}-3\beta _{3}-2\beta _{5})q^{5}+\cdots\)
432.8.i.b 432.i 9.c $8$ $134.950$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 18.8.c.b \(0\) \(0\) \(-54\) \(44\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-14+14\beta _{1}+\beta _{4})q^{5}+(-2+12\beta _{1}+\cdots)q^{7}+\cdots\)
432.8.i.c 432.i 9.c $12$ $134.950$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 9.8.c.a \(0\) \(0\) \(180\) \(84\) $\mathrm{SU}(2)[C_{3}]$ \(q+(30+30\beta _{7}+\beta _{10})q^{5}+(-2\beta _{1}+3\beta _{4}+\cdots)q^{7}+\cdots\)
432.8.i.d 432.i 9.c $14$ $134.950$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 36.8.e.a \(0\) \(0\) \(-321\) \(83\) $\mathrm{SU}(2)[C_{3}]$ \(q+(46\beta _{7}-\beta _{9})q^{5}+(12+\beta _{3}+12\beta _{7}+\cdots)q^{7}+\cdots\)
432.8.i.e 432.i 9.c $20$ $134.950$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 72.8.i.a \(0\) \(0\) \(125\) \(-1245\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{10}+12\beta _{11})q^{5}+(-5^{3}+\cdots)q^{7}+\cdots\)
432.8.i.f 432.i 9.c $22$ $134.950$ None 72.8.i.b \(0\) \(0\) \(125\) \(1245\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{8}^{\mathrm{old}}(432, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(432, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)