Defining parameters
Level: | \( N \) | \(=\) | \( 432 = 2^{4} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 432.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(432, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1044 | 86 | 958 |
Cusp forms | 972 | 82 | 890 |
Eisenstein series | 72 | 4 | 68 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(432, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
432.8.i.a | $6$ | $134.950$ | 6.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(-54\) | \(-210\) | \(q+(-18+18\beta _{1}+3\beta _{2}-3\beta _{3}-2\beta _{5})q^{5}+\cdots\) |
432.8.i.b | $8$ | $134.950$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(-54\) | \(44\) | \(q+(-14+14\beta _{1}+\beta _{4})q^{5}+(-2+12\beta _{1}+\cdots)q^{7}+\cdots\) |
432.8.i.c | $12$ | $134.950$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(180\) | \(84\) | \(q+(30+30\beta _{7}+\beta _{10})q^{5}+(-2\beta _{1}+3\beta _{4}+\cdots)q^{7}+\cdots\) |
432.8.i.d | $14$ | $134.950$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(0\) | \(-321\) | \(83\) | \(q+(46\beta _{7}-\beta _{9})q^{5}+(12+\beta _{3}+12\beta _{7}+\cdots)q^{7}+\cdots\) |
432.8.i.e | $20$ | $134.950$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(125\) | \(-1245\) | \(q+(-\beta _{1}+\beta _{10}+12\beta _{11})q^{5}+(-5^{3}+\cdots)q^{7}+\cdots\) |
432.8.i.f | $22$ | $134.950$ | None | \(0\) | \(0\) | \(125\) | \(1245\) |
Decomposition of \(S_{8}^{\mathrm{old}}(432, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(432, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)