Defining parameters
Level: | \( N \) | \(=\) | \( 435 = 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 435.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(435, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 28 | 36 |
Cusp forms | 56 | 28 | 28 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(435, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
435.2.c.a | $2$ | $3.473$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+2 i q^{2}+i q^{3}-2 q^{4}+(-i-2)q^{5}+\cdots\) |
435.2.c.b | $2$ | $3.473$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+i q^{2}-i q^{3}+q^{4}+(-2 i+1)q^{5}+\cdots\) |
435.2.c.c | $4$ | $3.473$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+\beta_1 q^{2}+\beta_1 q^{3}+q^{4}+(2\beta_1-1)q^{5}+\cdots\) |
435.2.c.d | $10$ | $3.473$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+(\beta _{1}+\beta _{2}+\beta _{9})q^{2}-\beta _{4}q^{3}+(-1+\cdots)q^{4}+\cdots\) |
435.2.c.e | $10$ | $3.473$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{4}+\beta _{6})q^{2}-\beta _{6}q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(435, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(435, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)