Properties

Label 435.2.c
Level $435$
Weight $2$
Character orbit 435.c
Rep. character $\chi_{435}(349,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $5$
Sturm bound $120$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(120\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(435, [\chi])\).

Total New Old
Modular forms 64 28 36
Cusp forms 56 28 28
Eisenstein series 8 0 8

Trace form

\( 28 q - 24 q^{4} - 4 q^{5} - 4 q^{6} - 28 q^{9} + 4 q^{10} + 16 q^{16} + 8 q^{19} + 8 q^{20} + 12 q^{24} - 12 q^{25} + 16 q^{26} - 16 q^{30} + 8 q^{31} + 24 q^{34} - 12 q^{35} + 24 q^{36} - 8 q^{39} - 56 q^{40}+ \cdots - 28 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(435, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
435.2.c.a 435.c 5.b $2$ $3.473$ \(\Q(\sqrt{-1}) \) None 435.2.c.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+i q^{3}-2 q^{4}+(-i-2)q^{5}+\cdots\)
435.2.c.b 435.c 5.b $2$ $3.473$ \(\Q(\sqrt{-1}) \) None 435.2.c.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}+q^{4}+(-2 i+1)q^{5}+\cdots\)
435.2.c.c 435.c 5.b $4$ $3.473$ \(\Q(\zeta_{8})\) None 435.2.c.c \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{2}+\beta_1 q^{3}+q^{4}+(2\beta_1-1)q^{5}+\cdots\)
435.2.c.d 435.c 5.b $10$ $3.473$ 10.0.\(\cdots\).1 None 435.2.c.d \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{2}+\beta _{9})q^{2}-\beta _{4}q^{3}+(-1+\cdots)q^{4}+\cdots\)
435.2.c.e 435.c 5.b $10$ $3.473$ 10.0.\(\cdots\).1 None 435.2.c.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{4}+\beta _{6})q^{2}-\beta _{6}q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(435, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(435, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)