Properties

Label 435.3.be
Level $435$
Weight $3$
Character orbit 435.be
Rep. character $\chi_{435}(31,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $480$
Newform subspaces $1$
Sturm bound $180$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 435.be (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q(\zeta_{28})\)
Newform subspaces: \( 1 \)
Sturm bound: \(180\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(435, [\chi])\).

Total New Old
Modular forms 1488 480 1008
Cusp forms 1392 480 912
Eisenstein series 96 0 96

Trace form

\( 480 q - 8 q^{2} + 72 q^{8} + 64 q^{11} + 24 q^{14} + 336 q^{16} - 72 q^{17} + 24 q^{18} - 24 q^{19} + 672 q^{22} + 264 q^{23} + 72 q^{24} + 400 q^{25} + 104 q^{26} + 8 q^{29} - 264 q^{31} - 896 q^{32} + 480 q^{36}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(435, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
435.3.be.a 435.be 29.f $480$ $11.853$ None 435.3.be.a \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{28}]$

Decomposition of \(S_{3}^{\mathrm{old}}(435, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(435, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)