Defining parameters
Level: | \( N \) | \(=\) | \( 435 = 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 435.be (of order \(28\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q(\zeta_{28})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(435, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1488 | 480 | 1008 |
Cusp forms | 1392 | 480 | 912 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(435, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
435.3.be.a | $480$ | $11.853$ | None | \(-8\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(435, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(435, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)