Properties

Label 4368.2.do
Level 43684368
Weight 22
Character orbit 4368.do
Rep. character χ4368(673,)\chi_{4368}(673,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 168168
Sturm bound 17921792

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4368=243713 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4368.do (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 17921792

Dimensions

The following table gives the dimensions of various subspaces of M2(4368,[χ])M_{2}(4368, [\chi]).

Total New Old
Modular forms 1840 168 1672
Cusp forms 1744 168 1576
Eisenstein series 96 0 96

Decomposition of S2new(4368,[χ])S_{2}^{\mathrm{new}}(4368, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(4368,[χ])S_{2}^{\mathrm{old}}(4368, [\chi]) into lower level spaces

S2old(4368,[χ]) S_{2}^{\mathrm{old}}(4368, [\chi]) \simeq S2new(13,[χ])S_{2}^{\mathrm{new}}(13, [\chi])20^{\oplus 20}\oplusS2new(39,[χ])S_{2}^{\mathrm{new}}(39, [\chi])10^{\oplus 10}\oplusS2new(52,[χ])S_{2}^{\mathrm{new}}(52, [\chi])12^{\oplus 12}\oplusS2new(78,[χ])S_{2}^{\mathrm{new}}(78, [\chi])8^{\oplus 8}\oplusS2new(91,[χ])S_{2}^{\mathrm{new}}(91, [\chi])10^{\oplus 10}\oplusS2new(104,[χ])S_{2}^{\mathrm{new}}(104, [\chi])8^{\oplus 8}\oplusS2new(156,[χ])S_{2}^{\mathrm{new}}(156, [\chi])6^{\oplus 6}\oplusS2new(182,[χ])S_{2}^{\mathrm{new}}(182, [\chi])8^{\oplus 8}\oplusS2new(208,[χ])S_{2}^{\mathrm{new}}(208, [\chi])4^{\oplus 4}\oplusS2new(273,[χ])S_{2}^{\mathrm{new}}(273, [\chi])5^{\oplus 5}\oplusS2new(312,[χ])S_{2}^{\mathrm{new}}(312, [\chi])4^{\oplus 4}\oplusS2new(364,[χ])S_{2}^{\mathrm{new}}(364, [\chi])6^{\oplus 6}\oplusS2new(546,[χ])S_{2}^{\mathrm{new}}(546, [\chi])4^{\oplus 4}\oplusS2new(624,[χ])S_{2}^{\mathrm{new}}(624, [\chi])2^{\oplus 2}\oplusS2new(728,[χ])S_{2}^{\mathrm{new}}(728, [\chi])4^{\oplus 4}\oplusS2new(1092,[χ])S_{2}^{\mathrm{new}}(1092, [\chi])3^{\oplus 3}\oplusS2new(1456,[χ])S_{2}^{\mathrm{new}}(1456, [\chi])2^{\oplus 2}\oplusS2new(2184,[χ])S_{2}^{\mathrm{new}}(2184, [\chi])2^{\oplus 2}