Defining parameters
Level: | \( N \) | \(=\) | \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4368.gr (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 56 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(1792\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4368, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1824 | 0 | 1824 |
Cusp forms | 1760 | 0 | 1760 |
Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{2}^{\mathrm{old}}(4368, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(728, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2184, [\chi])\)\(^{\oplus 2}\)