Properties

Label 4368.2.mq
Level $4368$
Weight $2$
Character orbit 4368.mq
Rep. character $\chi_{4368}(167,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $0$
Newform subspaces $0$
Sturm bound $1792$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4368.mq (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2184 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 0 \)
Sturm bound: \(1792\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4368, [\chi])\).

Total New Old
Modular forms 3648 0 3648
Cusp forms 3520 0 3520
Eisenstein series 128 0 128

Decomposition of \(S_{2}^{\mathrm{old}}(4368, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(2184, [\chi])\)\(^{\oplus 2}\)