Defining parameters
Level: | \( N \) | \(=\) | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 440.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(440, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 40 | 36 |
Cusp forms | 68 | 40 | 28 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(440, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
440.2.g.a | $4$ | $3.513$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+\beta_{3} q^{2}+(\beta_{2}-\beta_1)q^{3}+2 q^{4}+\cdots\) |
440.2.g.b | $12$ | $3.513$ | 12.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+\beta _{9}q^{2}+(\beta _{1}+\beta _{3})q^{3}-\beta _{5}q^{4}-\beta _{8}q^{5}+\cdots\) |
440.2.g.c | $24$ | $3.513$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(440, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(440, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 2}\)