Properties

Label 440.2.g
Level $440$
Weight $2$
Character orbit 440.g
Rep. character $\chi_{440}(221,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $3$
Sturm bound $144$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(144\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(440, [\chi])\).

Total New Old
Modular forms 76 40 36
Cusp forms 68 40 28
Eisenstein series 8 0 8

Trace form

\( 40 q + 4 q^{4} - 8 q^{6} + 12 q^{8} - 40 q^{9} - 4 q^{10} + 8 q^{12} + 16 q^{14} - 8 q^{15} - 8 q^{18} - 4 q^{20} + 24 q^{23} - 24 q^{24} - 40 q^{25} + 36 q^{26} - 20 q^{28} + 16 q^{31} + 16 q^{34} - 8 q^{36}+ \cdots - 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(440, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
440.2.g.a 440.g 8.b $4$ $3.513$ \(\Q(\zeta_{8})\) None 440.2.g.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{3} q^{2}+(\beta_{2}-\beta_1)q^{3}+2 q^{4}+\cdots\)
440.2.g.b 440.g 8.b $12$ $3.513$ 12.0.\(\cdots\).1 None 440.2.g.b \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{9}q^{2}+(\beta _{1}+\beta _{3})q^{3}-\beta _{5}q^{4}-\beta _{8}q^{5}+\cdots\)
440.2.g.c 440.g 8.b $24$ $3.513$ None 440.2.g.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(440, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(440, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 2}\)