Properties

Label 440.2.g
Level 440440
Weight 22
Character orbit 440.g
Rep. character χ440(221,)\chi_{440}(221,\cdot)
Character field Q\Q
Dimension 4040
Newform subspaces 33
Sturm bound 144144
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 440=23511 440 = 2^{3} \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 440.g (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 8 8
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 144144
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(440,[χ])M_{2}(440, [\chi]).

Total New Old
Modular forms 76 40 36
Cusp forms 68 40 28
Eisenstein series 8 0 8

Trace form

40q+4q48q6+12q840q94q10+8q12+16q148q158q184q20+24q2324q2440q25+36q2620q28+16q31+16q348q36+112q98+O(q100) 40 q + 4 q^{4} - 8 q^{6} + 12 q^{8} - 40 q^{9} - 4 q^{10} + 8 q^{12} + 16 q^{14} - 8 q^{15} - 8 q^{18} - 4 q^{20} + 24 q^{23} - 24 q^{24} - 40 q^{25} + 36 q^{26} - 20 q^{28} + 16 q^{31} + 16 q^{34} - 8 q^{36}+ \cdots - 112 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(440,[χ])S_{2}^{\mathrm{new}}(440, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
440.2.g.a 440.g 8.b 44 3.5133.513 Q(ζ8)\Q(\zeta_{8}) None 440.2.g.a 00 00 00 4-4 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β3q2+(β2β1)q3+2q4+q+\beta_{3} q^{2}+(\beta_{2}-\beta_1)q^{3}+2 q^{4}+\cdots
440.2.g.b 440.g 8.b 1212 3.5133.513 12.0.\cdots.1 None 440.2.g.b 00 00 00 44 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β9q2+(β1+β3)q3β5q4β8q5+q+\beta _{9}q^{2}+(\beta _{1}+\beta _{3})q^{3}-\beta _{5}q^{4}-\beta _{8}q^{5}+\cdots
440.2.g.c 440.g 8.b 2424 3.5133.513 None 440.2.g.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S2old(440,[χ])S_{2}^{\mathrm{old}}(440, [\chi]) into lower level spaces

S2old(440,[χ]) S_{2}^{\mathrm{old}}(440, [\chi]) \simeq S2new(40,[χ])S_{2}^{\mathrm{new}}(40, [\chi])2^{\oplus 2}\oplusS2new(88,[χ])S_{2}^{\mathrm{new}}(88, [\chi])2^{\oplus 2}