Properties

Label 440.4.g
Level 440440
Weight 44
Character orbit 440.g
Rep. character χ440(221,)\chi_{440}(221,\cdot)
Character field Q\Q
Dimension 120120
Sturm bound 288288

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 440=23511 440 = 2^{3} \cdot 5 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 440.g (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 8 8
Character field: Q\Q
Sturm bound: 288288

Dimensions

The following table gives the dimensions of various subspaces of M4(440,[χ])M_{4}(440, [\chi]).

Total New Old
Modular forms 220 120 100
Cusp forms 212 120 92
Eisenstein series 8 0 8

Trace form

120q12q4+72q6+12q81080q960q10376q1248q14+120q15160q16+232q1820q20552q23728q243000q25+252q26+380q28++10512q98+O(q100) 120 q - 12 q^{4} + 72 q^{6} + 12 q^{8} - 1080 q^{9} - 60 q^{10} - 376 q^{12} - 48 q^{14} + 120 q^{15} - 160 q^{16} + 232 q^{18} - 20 q^{20} - 552 q^{23} - 728 q^{24} - 3000 q^{25} + 252 q^{26} + 380 q^{28}+ \cdots + 10512 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(440,[χ])S_{4}^{\mathrm{new}}(440, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(440,[χ])S_{4}^{\mathrm{old}}(440, [\chi]) into lower level spaces

S4old(440,[χ]) S_{4}^{\mathrm{old}}(440, [\chi]) \simeq S4new(8,[χ])S_{4}^{\mathrm{new}}(8, [\chi])4^{\oplus 4}\oplusS4new(40,[χ])S_{4}^{\mathrm{new}}(40, [\chi])2^{\oplus 2}\oplusS4new(88,[χ])S_{4}^{\mathrm{new}}(88, [\chi])2^{\oplus 2}