Properties

Label 441.2.g
Level $441$
Weight $2$
Character orbit 441.g
Rep. character $\chi_{441}(67,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $72$
Newform subspaces $8$
Sturm bound $112$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(112\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(441, [\chi])\).

Total New Old
Modular forms 128 88 40
Cusp forms 96 72 24
Eisenstein series 32 16 16

Trace form

\( 72 q - q^{2} + q^{3} - 33 q^{4} + 10 q^{5} + 2 q^{6} - 12 q^{8} - q^{9} + O(q^{10}) \) \( 72 q - q^{2} + q^{3} - 33 q^{4} + 10 q^{5} + 2 q^{6} - 12 q^{8} - q^{9} + 6 q^{10} - 6 q^{11} - 19 q^{12} + 3 q^{13} + 10 q^{15} - 27 q^{16} - 9 q^{17} + 19 q^{18} - 4 q^{20} - 8 q^{23} - 12 q^{24} + 42 q^{25} - 16 q^{26} + 7 q^{27} - 18 q^{29} + 72 q^{30} + 3 q^{31} + 41 q^{32} + 16 q^{33} - 70 q^{36} + 3 q^{37} + 38 q^{38} - 28 q^{39} - 12 q^{40} - 10 q^{41} - 11 q^{44} + 4 q^{45} - 12 q^{46} - 27 q^{47} + 5 q^{48} - 45 q^{50} - 14 q^{51} - 30 q^{52} + 16 q^{53} + 62 q^{54} + 6 q^{55} - 15 q^{57} - 18 q^{58} - 30 q^{59} - 16 q^{60} + 12 q^{62} + 12 q^{64} + 30 q^{65} + 41 q^{66} + 6 q^{67} + 60 q^{68} - 6 q^{69} + 6 q^{71} - 51 q^{72} - 12 q^{73} - 82 q^{74} - 43 q^{75} - 6 q^{76} + 69 q^{78} + 18 q^{79} - 19 q^{80} - q^{81} - 18 q^{83} + 3 q^{85} - 50 q^{86} - 29 q^{87} + 18 q^{88} - 41 q^{89} - 25 q^{90} - 52 q^{92} + 58 q^{93} + 3 q^{94} - 17 q^{95} - 14 q^{96} + 3 q^{97} - 34 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(441, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
441.2.g.a 441.g 63.g $2$ $3.521$ \(\Q(\sqrt{-3}) \) None 63.2.g.a \(-1\) \(3\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(2-\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
441.2.g.b 441.g 63.g $6$ $3.521$ \(\Q(\zeta_{18})\) None 63.2.f.a \(-3\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta_{5}+\beta_1-1)q^{2}+(\beta_{4}+\beta_{2})q^{3}+\cdots\)
441.2.g.c 441.g 63.g $6$ $3.521$ \(\Q(\zeta_{18})\) None 63.2.f.a \(-3\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta_{5}+\beta_1-1)q^{2}+(-\beta_{4}-\beta_{2})q^{3}+\cdots\)
441.2.g.d 441.g 63.g $6$ $3.521$ 6.0.309123.1 None 63.2.f.b \(1\) \(-2\) \(10\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{2}-\beta _{3}+\beta _{5})q^{2}+(-1+\cdots)q^{3}+\cdots\)
441.2.g.e 441.g 63.g $6$ $3.521$ 6.0.309123.1 None 63.2.f.b \(1\) \(2\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{2}-\beta _{3}+\beta _{5})q^{2}+(1-\beta _{1}+\cdots)q^{3}+\cdots\)
441.2.g.f 441.g 63.g $10$ $3.521$ 10.0.\(\cdots\).1 None 63.2.g.b \(2\) \(-2\) \(8\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(-\beta _{2}+\beta _{7})q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots\)
441.2.g.g 441.g 63.g $12$ $3.521$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 441.2.f.g \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{2}+\beta _{5})q^{2}+(-\beta _{8}-\beta _{10})q^{3}+\cdots\)
441.2.g.h 441.g 63.g $24$ $3.521$ None 441.2.f.h \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(441, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(441, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)