Defining parameters
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.o (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(441, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 128 | 88 | 40 |
Cusp forms | 96 | 72 | 24 |
Eisenstein series | 32 | 16 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(441, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
441.2.o.a | $2$ | $3.521$ | \(\Q(\sqrt{-3}) \) | None | \(3\) | \(-3\) | \(-3\) | \(0\) | \(q+(1+\zeta_{6})q^{2}+(-2+\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\) |
441.2.o.b | $2$ | $3.521$ | \(\Q(\sqrt{-3}) \) | None | \(3\) | \(3\) | \(3\) | \(0\) | \(q+(1+\zeta_{6})q^{2}+(2-\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\) |
441.2.o.c | $10$ | $3.521$ | 10.0.\(\cdots\).1 | None | \(0\) | \(-3\) | \(0\) | \(0\) | \(q+(-\beta _{3}-\beta _{4}-\beta _{5}-\beta _{7}-\beta _{8})q^{2}+\cdots\) |
441.2.o.d | $10$ | $3.521$ | 10.0.\(\cdots\).1 | None | \(0\) | \(3\) | \(0\) | \(0\) | \(q+(-\beta _{3}-\beta _{4}-\beta _{5}-\beta _{7}-\beta _{8})q^{2}+\cdots\) |
441.2.o.e | $48$ | $3.521$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(441, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(441, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)