Defining parameters
Level: | \( N \) | \(=\) | \( 444 = 2^{2} \cdot 3 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 444.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(152\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(444, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 164 | 12 | 152 |
Cusp forms | 140 | 12 | 128 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(444, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
444.2.i.a | $2$ | $3.545$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(1\) | \(-2\) | \(3\) | \(q+\zeta_{6}q^{3}-2\zeta_{6}q^{5}+3\zeta_{6}q^{7}+(-1+\cdots)q^{9}+\cdots\) |
444.2.i.b | $4$ | $3.545$ | \(\Q(\sqrt{-3}, \sqrt{37})\) | None | \(0\) | \(2\) | \(1\) | \(-6\) | \(q+\beta _{2}q^{3}+\beta _{1}q^{5}-3\beta _{2}q^{7}+(-1+\beta _{2}+\cdots)q^{9}+\cdots\) |
444.2.i.c | $6$ | $3.545$ | 6.0.27379323.1 | None | \(0\) | \(-3\) | \(-1\) | \(3\) | \(q+(-1-\beta _{4})q^{3}+(\beta _{1}+\beta _{2})q^{5}+(1+\beta _{4}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(444, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(444, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 2}\)