Properties

Label 444.2.i
Level 444444
Weight 22
Character orbit 444.i
Rep. character χ444(121,)\chi_{444}(121,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 1212
Newform subspaces 33
Sturm bound 152152
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 444=22337 444 = 2^{2} \cdot 3 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 444.i (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 37 37
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 3 3
Sturm bound: 152152
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(444,[χ])M_{2}(444, [\chi]).

Total New Old
Modular forms 164 12 152
Cusp forms 140 12 128
Eisenstein series 24 0 24

Trace form

12q2q56q9+8q11+4q136q176q19+6q214q2312q25+12q298q31+6q33+10q358q37+4q41+20q43+4q45+12q47+4q99+O(q100) 12 q - 2 q^{5} - 6 q^{9} + 8 q^{11} + 4 q^{13} - 6 q^{17} - 6 q^{19} + 6 q^{21} - 4 q^{23} - 12 q^{25} + 12 q^{29} - 8 q^{31} + 6 q^{33} + 10 q^{35} - 8 q^{37} + 4 q^{41} + 20 q^{43} + 4 q^{45} + 12 q^{47}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(444,[χ])S_{2}^{\mathrm{new}}(444, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
444.2.i.a 444.i 37.c 22 3.5453.545 Q(3)\Q(\sqrt{-3}) None 444.2.i.a 00 11 2-2 33 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+ζ6q32ζ6q5+3ζ6q7+(1+)q9+q+\zeta_{6}q^{3}-2\zeta_{6}q^{5}+3\zeta_{6}q^{7}+(-1+\cdots)q^{9}+\cdots
444.2.i.b 444.i 37.c 44 3.5453.545 Q(3,37)\Q(\sqrt{-3}, \sqrt{37}) None 444.2.i.b 00 22 11 6-6 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β2q3+β1q53β2q7+(1+β2+)q9+q+\beta _{2}q^{3}+\beta _{1}q^{5}-3\beta _{2}q^{7}+(-1+\beta _{2}+\cdots)q^{9}+\cdots
444.2.i.c 444.i 37.c 66 3.5453.545 6.0.27379323.1 None 444.2.i.c 00 3-3 1-1 33 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β4)q3+(β1+β2)q5+(1+β4+)q7+q+(-1-\beta _{4})q^{3}+(\beta _{1}+\beta _{2})q^{5}+(1+\beta _{4}+\cdots)q^{7}+\cdots

Decomposition of S2old(444,[χ])S_{2}^{\mathrm{old}}(444, [\chi]) into lower level spaces

S2old(444,[χ]) S_{2}^{\mathrm{old}}(444, [\chi]) \simeq S2new(37,[χ])S_{2}^{\mathrm{new}}(37, [\chi])6^{\oplus 6}\oplusS2new(74,[χ])S_{2}^{\mathrm{new}}(74, [\chi])4^{\oplus 4}\oplusS2new(111,[χ])S_{2}^{\mathrm{new}}(111, [\chi])3^{\oplus 3}\oplusS2new(148,[χ])S_{2}^{\mathrm{new}}(148, [\chi])2^{\oplus 2}\oplusS2new(222,[χ])S_{2}^{\mathrm{new}}(222, [\chi])2^{\oplus 2}