Properties

Label 44528.2.a.r
Level 4452844528
Weight 22
Character orbit 44528.a
Self dual yes
Analytic conductor 355.558355.558
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [44528,2,Mod(1,44528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(44528, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("44528.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 44528=2411223 44528 = 2^{4} \cdot 11^{2} \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 44528.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 355.557870120355.557870120
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q32q54q72q97q132q15+4q176q194q21+q23q255q275q293q31+8q35+2q377q39+9q41+8q43+8q97+O(q100) q + q^{3} - 2 q^{5} - 4 q^{7} - 2 q^{9} - 7 q^{13} - 2 q^{15} + 4 q^{17} - 6 q^{19} - 4 q^{21} + q^{23} - q^{25} - 5 q^{27} - 5 q^{29} - 3 q^{31} + 8 q^{35} + 2 q^{37} - 7 q^{39} + 9 q^{41} + 8 q^{43}+ \cdots - 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 +1 +1
1111 1 -1
2323 1 -1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.