Properties

Label 448.2.bm
Level $448$
Weight $2$
Character orbit 448.bm
Rep. character $\chi_{448}(3,\cdot)$
Character field $\Q(\zeta_{48})$
Dimension $992$
Newform subspaces $1$
Sturm bound $128$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.bm (of order \(48\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 448 \)
Character field: \(\Q(\zeta_{48})\)
Newform subspaces: \( 1 \)
Sturm bound: \(128\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(448, [\chi])\).

Total New Old
Modular forms 1056 1056 0
Cusp forms 992 992 0
Eisenstein series 64 64 0

Trace form

\( 992 q - 8 q^{2} - 24 q^{3} - 8 q^{4} - 24 q^{5} - 16 q^{7} - 32 q^{8} - 8 q^{9} - 24 q^{10} - 8 q^{11} - 24 q^{12} - 16 q^{14} - 32 q^{15} - 8 q^{16} - 24 q^{17} - 8 q^{18} - 24 q^{19} - 16 q^{21} - 48 q^{22}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(448, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
448.2.bm.a 448.bm 448.am $992$ $3.577$ None 448.2.bm.a \(-8\) \(-24\) \(-24\) \(-16\) $\mathrm{SU}(2)[C_{48}]$