Defining parameters
Level: | \( N \) | \(=\) | \( 448 = 2^{6} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 448.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(256\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(448, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 408 | 100 | 308 |
Cusp forms | 360 | 92 | 268 |
Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(448, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(448, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(448, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)