Properties

Label 448.4.i
Level $448$
Weight $4$
Character orbit 448.i
Rep. character $\chi_{448}(65,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $92$
Newform subspaces $17$
Sturm bound $256$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 17 \)
Sturm bound: \(256\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(448, [\chi])\).

Total New Old
Modular forms 408 100 308
Cusp forms 360 92 268
Eisenstein series 48 8 40

Trace form

\( 92 q + 2 q^{5} - 380 q^{9} - 136 q^{13} - 2 q^{17} - 290 q^{21} - 952 q^{25} - 392 q^{29} + 106 q^{33} - 494 q^{37} - 8 q^{41} - 444 q^{45} - 4 q^{49} - 374 q^{53} + 100 q^{57} + 2162 q^{61} - 252 q^{65}+ \cdots + 2968 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(448, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
448.4.i.a 448.i 7.c $2$ $26.433$ \(\Q(\sqrt{-3}) \) None 7.4.c.a \(0\) \(-7\) \(7\) \(-28\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-7+7\zeta_{6})q^{3}+7\zeta_{6}q^{5}+(-7-14\zeta_{6})q^{7}+\cdots\)
448.4.i.b 448.i 7.c $2$ $26.433$ \(\Q(\sqrt{-3}) \) None 14.4.c.a \(0\) \(-5\) \(-9\) \(-28\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-5+5\zeta_{6})q^{3}-9\zeta_{6}q^{5}+(-21+\cdots)q^{7}+\cdots\)
448.4.i.c 448.i 7.c $2$ $26.433$ \(\Q(\sqrt{-3}) \) None 14.4.c.b \(0\) \(-1\) \(7\) \(-20\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+7\zeta_{6}q^{5}+(-1-18\zeta_{6})q^{7}+\cdots\)
448.4.i.d 448.i 7.c $2$ $26.433$ \(\Q(\sqrt{-3}) \) None 14.4.c.b \(0\) \(1\) \(7\) \(20\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+7\zeta_{6}q^{5}+(1+18\zeta_{6})q^{7}+\cdots\)
448.4.i.e 448.i 7.c $2$ $26.433$ \(\Q(\sqrt{-3}) \) None 14.4.c.a \(0\) \(5\) \(-9\) \(28\) $\mathrm{SU}(2)[C_{3}]$ \(q+(5-5\zeta_{6})q^{3}-9\zeta_{6}q^{5}+(21-14\zeta_{6})q^{7}+\cdots\)
448.4.i.f 448.i 7.c $2$ $26.433$ \(\Q(\sqrt{-3}) \) None 7.4.c.a \(0\) \(7\) \(7\) \(28\) $\mathrm{SU}(2)[C_{3}]$ \(q+(7-7\zeta_{6})q^{3}+7\zeta_{6}q^{5}+(7+14\zeta_{6})q^{7}+\cdots\)
448.4.i.g 448.i 7.c $4$ $26.433$ \(\Q(\sqrt{-3}, \sqrt{37})\) None 28.4.e.a \(0\) \(0\) \(-14\) \(-24\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{3}+(-7+7\beta _{1}+2\beta _{2}+2\beta _{3})q^{5}+\cdots\)
448.4.i.h 448.i 7.c $4$ $26.433$ \(\Q(\sqrt{-3}, \sqrt{37})\) None 28.4.e.a \(0\) \(0\) \(-14\) \(24\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{3}+(-7+7\beta _{1}-2\beta _{2}-2\beta _{3})q^{5}+\cdots\)
448.4.i.i 448.i 7.c $4$ $26.433$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 224.4.i.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}-\beta _{2}q^{5}+(8\beta _{1}+5\beta _{3})q^{7}+\cdots\)
448.4.i.j 448.i 7.c $6$ $26.433$ 6.0.11163123.4 None 56.4.i.b \(0\) \(-7\) \(-3\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2\beta _{1}+\beta _{5})q^{3}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
448.4.i.k 448.i 7.c $6$ $26.433$ 6.0.11163123.4 None 56.4.i.a \(0\) \(-1\) \(13\) \(20\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{3}+(5-5\beta _{1}+\beta _{3}+\beta _{4}+2\beta _{5})q^{5}+\cdots\)
448.4.i.l 448.i 7.c $6$ $26.433$ 6.0.11163123.4 None 56.4.i.a \(0\) \(1\) \(13\) \(-20\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{3}+(5-5\beta _{1}+\beta _{3}+\beta _{4}+2\beta _{5})q^{5}+\cdots\)
448.4.i.m 448.i 7.c $6$ $26.433$ 6.0.11163123.4 None 56.4.i.b \(0\) \(7\) \(-3\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\beta _{1}-\beta _{3}+\beta _{5})q^{3}+(-\beta _{1}-\beta _{4}+\cdots)q^{5}+\cdots\)
448.4.i.n 448.i 7.c $8$ $26.433$ 8.0.\(\cdots\).1 None 224.4.i.b \(0\) \(0\) \(12\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{4}-\beta _{5}+\beta _{6}-\beta _{7})q^{3}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
448.4.i.o 448.i 7.c $12$ $26.433$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 224.4.i.c \(0\) \(-6\) \(-10\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{2}+\beta _{7}-\beta _{8})q^{3}+(\beta _{1}-2\beta _{2}+\cdots)q^{5}+\cdots\)
448.4.i.p 448.i 7.c $12$ $26.433$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 224.4.i.d \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{3}+(-\beta _{1}-\beta _{6})q^{5}+(\beta _{3}-\beta _{9}+\cdots)q^{7}+\cdots\)
448.4.i.q 448.i 7.c $12$ $26.433$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 224.4.i.c \(0\) \(6\) \(-10\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{2}-\beta _{7}+\beta _{8})q^{3}+(\beta _{1}-2\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(448, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(448, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)