Properties

Label 448.8.a.e.1.1
Level $448$
Weight $8$
Character 448.1
Self dual yes
Analytic conductor $139.948$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,8,Mod(1,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.948491417\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 448.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-18.0000 q^{3} -160.000 q^{5} +343.000 q^{7} -1863.00 q^{9} +5704.00 q^{11} -1388.00 q^{13} +2880.00 q^{15} -31434.0 q^{17} -19966.0 q^{19} -6174.00 q^{21} +77136.0 q^{23} -52525.0 q^{25} +72900.0 q^{27} +193374. q^{29} +26356.0 q^{31} -102672. q^{33} -54880.0 q^{35} -204346. q^{37} +24984.0 q^{39} -663050. q^{41} -335920. q^{43} +298080. q^{45} -1.11981e6 q^{47} +117649. q^{49} +565812. q^{51} -112782. q^{53} -912640. q^{55} +359388. q^{57} +536154. q^{59} +1.17026e6 q^{61} -639009. q^{63} +222080. q^{65} +3.89066e6 q^{67} -1.38845e6 q^{69} -2.50534e6 q^{71} -1.43507e6 q^{73} +945450. q^{75} +1.95647e6 q^{77} -176536. q^{79} +2.76218e6 q^{81} -6.21162e6 q^{83} +5.02944e6 q^{85} -3.48073e6 q^{87} -4.72906e6 q^{89} -476084. q^{91} -474408. q^{93} +3.19456e6 q^{95} -2.12956e6 q^{97} -1.06266e7 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −18.0000 −0.384900 −0.192450 0.981307i \(-0.561643\pi\)
−0.192450 + 0.981307i \(0.561643\pi\)
\(4\) 0 0
\(5\) −160.000 −0.572433 −0.286217 0.958165i \(-0.592398\pi\)
−0.286217 + 0.958165i \(0.592398\pi\)
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 0 0
\(9\) −1863.00 −0.851852
\(10\) 0 0
\(11\) 5704.00 1.29213 0.646063 0.763284i \(-0.276414\pi\)
0.646063 + 0.763284i \(0.276414\pi\)
\(12\) 0 0
\(13\) −1388.00 −0.175222 −0.0876108 0.996155i \(-0.527923\pi\)
−0.0876108 + 0.996155i \(0.527923\pi\)
\(14\) 0 0
\(15\) 2880.00 0.220330
\(16\) 0 0
\(17\) −31434.0 −1.55177 −0.775887 0.630872i \(-0.782697\pi\)
−0.775887 + 0.630872i \(0.782697\pi\)
\(18\) 0 0
\(19\) −19966.0 −0.667811 −0.333905 0.942607i \(-0.608367\pi\)
−0.333905 + 0.942607i \(0.608367\pi\)
\(20\) 0 0
\(21\) −6174.00 −0.145479
\(22\) 0 0
\(23\) 77136.0 1.32193 0.660967 0.750415i \(-0.270146\pi\)
0.660967 + 0.750415i \(0.270146\pi\)
\(24\) 0 0
\(25\) −52525.0 −0.672320
\(26\) 0 0
\(27\) 72900.0 0.712778
\(28\) 0 0
\(29\) 193374. 1.47233 0.736165 0.676802i \(-0.236635\pi\)
0.736165 + 0.676802i \(0.236635\pi\)
\(30\) 0 0
\(31\) 26356.0 0.158896 0.0794481 0.996839i \(-0.474684\pi\)
0.0794481 + 0.996839i \(0.474684\pi\)
\(32\) 0 0
\(33\) −102672. −0.497340
\(34\) 0 0
\(35\) −54880.0 −0.216359
\(36\) 0 0
\(37\) −204346. −0.663224 −0.331612 0.943416i \(-0.607592\pi\)
−0.331612 + 0.943416i \(0.607592\pi\)
\(38\) 0 0
\(39\) 24984.0 0.0674428
\(40\) 0 0
\(41\) −663050. −1.50246 −0.751230 0.660041i \(-0.770539\pi\)
−0.751230 + 0.660041i \(0.770539\pi\)
\(42\) 0 0
\(43\) −335920. −0.644312 −0.322156 0.946687i \(-0.604408\pi\)
−0.322156 + 0.946687i \(0.604408\pi\)
\(44\) 0 0
\(45\) 298080. 0.487628
\(46\) 0 0
\(47\) −1.11981e6 −1.57327 −0.786634 0.617420i \(-0.788178\pi\)
−0.786634 + 0.617420i \(0.788178\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 565812. 0.597278
\(52\) 0 0
\(53\) −112782. −0.104058 −0.0520289 0.998646i \(-0.516569\pi\)
−0.0520289 + 0.998646i \(0.516569\pi\)
\(54\) 0 0
\(55\) −912640. −0.739657
\(56\) 0 0
\(57\) 359388. 0.257041
\(58\) 0 0
\(59\) 536154. 0.339866 0.169933 0.985456i \(-0.445645\pi\)
0.169933 + 0.985456i \(0.445645\pi\)
\(60\) 0 0
\(61\) 1.17026e6 0.660130 0.330065 0.943958i \(-0.392929\pi\)
0.330065 + 0.943958i \(0.392929\pi\)
\(62\) 0 0
\(63\) −639009. −0.321970
\(64\) 0 0
\(65\) 222080. 0.100303
\(66\) 0 0
\(67\) 3.89066e6 1.58038 0.790190 0.612862i \(-0.209982\pi\)
0.790190 + 0.612862i \(0.209982\pi\)
\(68\) 0 0
\(69\) −1.38845e6 −0.508813
\(70\) 0 0
\(71\) −2.50534e6 −0.830736 −0.415368 0.909653i \(-0.636347\pi\)
−0.415368 + 0.909653i \(0.636347\pi\)
\(72\) 0 0
\(73\) −1.43507e6 −0.431761 −0.215880 0.976420i \(-0.569262\pi\)
−0.215880 + 0.976420i \(0.569262\pi\)
\(74\) 0 0
\(75\) 945450. 0.258776
\(76\) 0 0
\(77\) 1.95647e6 0.488378
\(78\) 0 0
\(79\) −176536. −0.0402845 −0.0201423 0.999797i \(-0.506412\pi\)
−0.0201423 + 0.999797i \(0.506412\pi\)
\(80\) 0 0
\(81\) 2.76218e6 0.577503
\(82\) 0 0
\(83\) −6.21162e6 −1.19243 −0.596213 0.802826i \(-0.703329\pi\)
−0.596213 + 0.802826i \(0.703329\pi\)
\(84\) 0 0
\(85\) 5.02944e6 0.888287
\(86\) 0 0
\(87\) −3.48073e6 −0.566700
\(88\) 0 0
\(89\) −4.72906e6 −0.711066 −0.355533 0.934664i \(-0.615701\pi\)
−0.355533 + 0.934664i \(0.615701\pi\)
\(90\) 0 0
\(91\) −476084. −0.0662276
\(92\) 0 0
\(93\) −474408. −0.0611592
\(94\) 0 0
\(95\) 3.19456e6 0.382277
\(96\) 0 0
\(97\) −2.12956e6 −0.236913 −0.118457 0.992959i \(-0.537795\pi\)
−0.118457 + 0.992959i \(0.537795\pi\)
\(98\) 0 0
\(99\) −1.06266e7 −1.10070
\(100\) 0 0
\(101\) −5.66032e6 −0.546659 −0.273329 0.961921i \(-0.588125\pi\)
−0.273329 + 0.961921i \(0.588125\pi\)
\(102\) 0 0
\(103\) 1.40257e7 1.26472 0.632362 0.774673i \(-0.282086\pi\)
0.632362 + 0.774673i \(0.282086\pi\)
\(104\) 0 0
\(105\) 987840. 0.0832768
\(106\) 0 0
\(107\) −2.07289e6 −0.163581 −0.0817906 0.996650i \(-0.526064\pi\)
−0.0817906 + 0.996650i \(0.526064\pi\)
\(108\) 0 0
\(109\) 6.87247e6 0.508300 0.254150 0.967165i \(-0.418204\pi\)
0.254150 + 0.967165i \(0.418204\pi\)
\(110\) 0 0
\(111\) 3.67823e6 0.255275
\(112\) 0 0
\(113\) 2.27437e7 1.48281 0.741407 0.671055i \(-0.234159\pi\)
0.741407 + 0.671055i \(0.234159\pi\)
\(114\) 0 0
\(115\) −1.23418e7 −0.756719
\(116\) 0 0
\(117\) 2.58584e6 0.149263
\(118\) 0 0
\(119\) −1.07819e7 −0.586515
\(120\) 0 0
\(121\) 1.30484e7 0.669592
\(122\) 0 0
\(123\) 1.19349e7 0.578297
\(124\) 0 0
\(125\) 2.09040e7 0.957292
\(126\) 0 0
\(127\) 2.51834e7 1.09094 0.545470 0.838130i \(-0.316351\pi\)
0.545470 + 0.838130i \(0.316351\pi\)
\(128\) 0 0
\(129\) 6.04656e6 0.247996
\(130\) 0 0
\(131\) −1.74187e7 −0.676966 −0.338483 0.940972i \(-0.609914\pi\)
−0.338483 + 0.940972i \(0.609914\pi\)
\(132\) 0 0
\(133\) −6.84834e6 −0.252409
\(134\) 0 0
\(135\) −1.16640e7 −0.408018
\(136\) 0 0
\(137\) 4.49972e7 1.49508 0.747538 0.664219i \(-0.231236\pi\)
0.747538 + 0.664219i \(0.231236\pi\)
\(138\) 0 0
\(139\) 4.26865e7 1.34815 0.674076 0.738662i \(-0.264542\pi\)
0.674076 + 0.738662i \(0.264542\pi\)
\(140\) 0 0
\(141\) 2.01566e7 0.605551
\(142\) 0 0
\(143\) −7.91715e6 −0.226409
\(144\) 0 0
\(145\) −3.09398e7 −0.842811
\(146\) 0 0
\(147\) −2.11768e6 −0.0549857
\(148\) 0 0
\(149\) −4.19364e7 −1.03858 −0.519289 0.854599i \(-0.673803\pi\)
−0.519289 + 0.854599i \(0.673803\pi\)
\(150\) 0 0
\(151\) 7.60087e6 0.179657 0.0898285 0.995957i \(-0.471368\pi\)
0.0898285 + 0.995957i \(0.471368\pi\)
\(152\) 0 0
\(153\) 5.85615e7 1.32188
\(154\) 0 0
\(155\) −4.21696e6 −0.0909575
\(156\) 0 0
\(157\) −8.46198e7 −1.74511 −0.872556 0.488515i \(-0.837539\pi\)
−0.872556 + 0.488515i \(0.837539\pi\)
\(158\) 0 0
\(159\) 2.03008e6 0.0400518
\(160\) 0 0
\(161\) 2.64576e7 0.499644
\(162\) 0 0
\(163\) 1.54856e7 0.280074 0.140037 0.990146i \(-0.455278\pi\)
0.140037 + 0.990146i \(0.455278\pi\)
\(164\) 0 0
\(165\) 1.64275e7 0.284694
\(166\) 0 0
\(167\) 4.48893e7 0.745823 0.372911 0.927867i \(-0.378360\pi\)
0.372911 + 0.927867i \(0.378360\pi\)
\(168\) 0 0
\(169\) −6.08220e7 −0.969297
\(170\) 0 0
\(171\) 3.71967e7 0.568876
\(172\) 0 0
\(173\) 1.02900e8 1.51096 0.755479 0.655173i \(-0.227404\pi\)
0.755479 + 0.655173i \(0.227404\pi\)
\(174\) 0 0
\(175\) −1.80161e7 −0.254113
\(176\) 0 0
\(177\) −9.65077e6 −0.130814
\(178\) 0 0
\(179\) 5.01780e7 0.653924 0.326962 0.945037i \(-0.393975\pi\)
0.326962 + 0.945037i \(0.393975\pi\)
\(180\) 0 0
\(181\) 1.32769e8 1.66426 0.832128 0.554583i \(-0.187122\pi\)
0.832128 + 0.554583i \(0.187122\pi\)
\(182\) 0 0
\(183\) −2.10648e7 −0.254084
\(184\) 0 0
\(185\) 3.26954e7 0.379651
\(186\) 0 0
\(187\) −1.79300e8 −2.00509
\(188\) 0 0
\(189\) 2.50047e7 0.269405
\(190\) 0 0
\(191\) −1.43977e8 −1.49512 −0.747559 0.664195i \(-0.768775\pi\)
−0.747559 + 0.664195i \(0.768775\pi\)
\(192\) 0 0
\(193\) 9.17033e7 0.918194 0.459097 0.888386i \(-0.348173\pi\)
0.459097 + 0.888386i \(0.348173\pi\)
\(194\) 0 0
\(195\) −3.99744e6 −0.0386065
\(196\) 0 0
\(197\) 1.10905e8 1.03352 0.516761 0.856130i \(-0.327138\pi\)
0.516761 + 0.856130i \(0.327138\pi\)
\(198\) 0 0
\(199\) 1.61688e8 1.45443 0.727214 0.686411i \(-0.240815\pi\)
0.727214 + 0.686411i \(0.240815\pi\)
\(200\) 0 0
\(201\) −7.00319e7 −0.608288
\(202\) 0 0
\(203\) 6.63273e7 0.556488
\(204\) 0 0
\(205\) 1.06088e8 0.860058
\(206\) 0 0
\(207\) −1.43704e8 −1.12609
\(208\) 0 0
\(209\) −1.13886e8 −0.862896
\(210\) 0 0
\(211\) 1.74772e6 0.0128080 0.00640401 0.999979i \(-0.497962\pi\)
0.00640401 + 0.999979i \(0.497962\pi\)
\(212\) 0 0
\(213\) 4.50962e7 0.319751
\(214\) 0 0
\(215\) 5.37472e7 0.368826
\(216\) 0 0
\(217\) 9.04011e6 0.0600571
\(218\) 0 0
\(219\) 2.58313e7 0.166185
\(220\) 0 0
\(221\) 4.36304e7 0.271904
\(222\) 0 0
\(223\) 4.83064e7 0.291701 0.145850 0.989307i \(-0.453408\pi\)
0.145850 + 0.989307i \(0.453408\pi\)
\(224\) 0 0
\(225\) 9.78541e7 0.572717
\(226\) 0 0
\(227\) 2.05296e8 1.16491 0.582453 0.812864i \(-0.302093\pi\)
0.582453 + 0.812864i \(0.302093\pi\)
\(228\) 0 0
\(229\) 2.81108e8 1.54685 0.773426 0.633886i \(-0.218541\pi\)
0.773426 + 0.633886i \(0.218541\pi\)
\(230\) 0 0
\(231\) −3.52165e7 −0.187977
\(232\) 0 0
\(233\) 3.08493e8 1.59772 0.798858 0.601519i \(-0.205438\pi\)
0.798858 + 0.601519i \(0.205438\pi\)
\(234\) 0 0
\(235\) 1.79170e8 0.900591
\(236\) 0 0
\(237\) 3.17765e6 0.0155055
\(238\) 0 0
\(239\) 1.31783e8 0.624408 0.312204 0.950015i \(-0.398933\pi\)
0.312204 + 0.950015i \(0.398933\pi\)
\(240\) 0 0
\(241\) 2.79725e8 1.28727 0.643637 0.765331i \(-0.277425\pi\)
0.643637 + 0.765331i \(0.277425\pi\)
\(242\) 0 0
\(243\) −2.09152e8 −0.935059
\(244\) 0 0
\(245\) −1.88238e7 −0.0817762
\(246\) 0 0
\(247\) 2.77128e7 0.117015
\(248\) 0 0
\(249\) 1.11809e8 0.458965
\(250\) 0 0
\(251\) 1.24213e8 0.495805 0.247902 0.968785i \(-0.420259\pi\)
0.247902 + 0.968785i \(0.420259\pi\)
\(252\) 0 0
\(253\) 4.39984e8 1.70811
\(254\) 0 0
\(255\) −9.05299e7 −0.341902
\(256\) 0 0
\(257\) 3.83682e8 1.40996 0.704978 0.709229i \(-0.250957\pi\)
0.704978 + 0.709229i \(0.250957\pi\)
\(258\) 0 0
\(259\) −7.00907e7 −0.250675
\(260\) 0 0
\(261\) −3.60256e8 −1.25421
\(262\) 0 0
\(263\) −4.54839e8 −1.54174 −0.770872 0.636990i \(-0.780179\pi\)
−0.770872 + 0.636990i \(0.780179\pi\)
\(264\) 0 0
\(265\) 1.80451e7 0.0595661
\(266\) 0 0
\(267\) 8.51231e7 0.273689
\(268\) 0 0
\(269\) −8.19052e7 −0.256554 −0.128277 0.991738i \(-0.540945\pi\)
−0.128277 + 0.991738i \(0.540945\pi\)
\(270\) 0 0
\(271\) 2.41677e8 0.737638 0.368819 0.929501i \(-0.379762\pi\)
0.368819 + 0.929501i \(0.379762\pi\)
\(272\) 0 0
\(273\) 8.56951e6 0.0254910
\(274\) 0 0
\(275\) −2.99603e8 −0.868723
\(276\) 0 0
\(277\) 2.02562e7 0.0572636 0.0286318 0.999590i \(-0.490885\pi\)
0.0286318 + 0.999590i \(0.490885\pi\)
\(278\) 0 0
\(279\) −4.91012e7 −0.135356
\(280\) 0 0
\(281\) −2.24402e8 −0.603330 −0.301665 0.953414i \(-0.597542\pi\)
−0.301665 + 0.953414i \(0.597542\pi\)
\(282\) 0 0
\(283\) −5.79761e8 −1.52054 −0.760268 0.649610i \(-0.774932\pi\)
−0.760268 + 0.649610i \(0.774932\pi\)
\(284\) 0 0
\(285\) −5.75021e7 −0.147139
\(286\) 0 0
\(287\) −2.27426e8 −0.567876
\(288\) 0 0
\(289\) 5.77758e8 1.40800
\(290\) 0 0
\(291\) 3.83321e7 0.0911879
\(292\) 0 0
\(293\) −9.69369e7 −0.225140 −0.112570 0.993644i \(-0.535908\pi\)
−0.112570 + 0.993644i \(0.535908\pi\)
\(294\) 0 0
\(295\) −8.57846e7 −0.194551
\(296\) 0 0
\(297\) 4.15822e8 0.921000
\(298\) 0 0
\(299\) −1.07065e8 −0.231631
\(300\) 0 0
\(301\) −1.15221e8 −0.243527
\(302\) 0 0
\(303\) 1.01886e8 0.210409
\(304\) 0 0
\(305\) −1.87242e8 −0.377880
\(306\) 0 0
\(307\) −6.23962e8 −1.23076 −0.615381 0.788230i \(-0.710998\pi\)
−0.615381 + 0.788230i \(0.710998\pi\)
\(308\) 0 0
\(309\) −2.52463e8 −0.486792
\(310\) 0 0
\(311\) 4.83166e8 0.910824 0.455412 0.890281i \(-0.349492\pi\)
0.455412 + 0.890281i \(0.349492\pi\)
\(312\) 0 0
\(313\) −4.88641e8 −0.900709 −0.450354 0.892850i \(-0.648702\pi\)
−0.450354 + 0.892850i \(0.648702\pi\)
\(314\) 0 0
\(315\) 1.02241e8 0.184306
\(316\) 0 0
\(317\) 5.89516e8 1.03941 0.519707 0.854345i \(-0.326041\pi\)
0.519707 + 0.854345i \(0.326041\pi\)
\(318\) 0 0
\(319\) 1.10301e9 1.90244
\(320\) 0 0
\(321\) 3.73121e7 0.0629624
\(322\) 0 0
\(323\) 6.27611e8 1.03629
\(324\) 0 0
\(325\) 7.29047e7 0.117805
\(326\) 0 0
\(327\) −1.23704e8 −0.195645
\(328\) 0 0
\(329\) −3.84096e8 −0.594639
\(330\) 0 0
\(331\) −4.96907e8 −0.753143 −0.376571 0.926388i \(-0.622897\pi\)
−0.376571 + 0.926388i \(0.622897\pi\)
\(332\) 0 0
\(333\) 3.80697e8 0.564968
\(334\) 0 0
\(335\) −6.22506e8 −0.904662
\(336\) 0 0
\(337\) −8.00789e8 −1.13976 −0.569880 0.821728i \(-0.693010\pi\)
−0.569880 + 0.821728i \(0.693010\pi\)
\(338\) 0 0
\(339\) −4.09387e8 −0.570736
\(340\) 0 0
\(341\) 1.50335e8 0.205314
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 0 0
\(345\) 2.22152e8 0.291261
\(346\) 0 0
\(347\) 9.36814e8 1.20365 0.601825 0.798628i \(-0.294440\pi\)
0.601825 + 0.798628i \(0.294440\pi\)
\(348\) 0 0
\(349\) 3.18551e8 0.401135 0.200567 0.979680i \(-0.435721\pi\)
0.200567 + 0.979680i \(0.435721\pi\)
\(350\) 0 0
\(351\) −1.01185e8 −0.124894
\(352\) 0 0
\(353\) 1.47778e9 1.78813 0.894065 0.447938i \(-0.147841\pi\)
0.894065 + 0.447938i \(0.147841\pi\)
\(354\) 0 0
\(355\) 4.00855e8 0.475541
\(356\) 0 0
\(357\) 1.94074e8 0.225750
\(358\) 0 0
\(359\) 7.63543e8 0.870969 0.435485 0.900196i \(-0.356577\pi\)
0.435485 + 0.900196i \(0.356577\pi\)
\(360\) 0 0
\(361\) −4.95231e8 −0.554029
\(362\) 0 0
\(363\) −2.34872e8 −0.257726
\(364\) 0 0
\(365\) 2.29611e8 0.247154
\(366\) 0 0
\(367\) 3.62182e8 0.382469 0.191234 0.981544i \(-0.438751\pi\)
0.191234 + 0.981544i \(0.438751\pi\)
\(368\) 0 0
\(369\) 1.23526e9 1.27987
\(370\) 0 0
\(371\) −3.86842e7 −0.0393301
\(372\) 0 0
\(373\) −4.93379e8 −0.492266 −0.246133 0.969236i \(-0.579160\pi\)
−0.246133 + 0.969236i \(0.579160\pi\)
\(374\) 0 0
\(375\) −3.76272e8 −0.368462
\(376\) 0 0
\(377\) −2.68403e8 −0.257984
\(378\) 0 0
\(379\) 1.76712e9 1.66735 0.833677 0.552252i \(-0.186231\pi\)
0.833677 + 0.552252i \(0.186231\pi\)
\(380\) 0 0
\(381\) −4.53301e8 −0.419903
\(382\) 0 0
\(383\) −1.83455e6 −0.00166853 −0.000834264 1.00000i \(-0.500266\pi\)
−0.000834264 1.00000i \(0.500266\pi\)
\(384\) 0 0
\(385\) −3.13036e8 −0.279564
\(386\) 0 0
\(387\) 6.25819e8 0.548858
\(388\) 0 0
\(389\) 1.74462e9 1.50272 0.751359 0.659894i \(-0.229399\pi\)
0.751359 + 0.659894i \(0.229399\pi\)
\(390\) 0 0
\(391\) −2.42469e9 −2.05134
\(392\) 0 0
\(393\) 3.13537e8 0.260564
\(394\) 0 0
\(395\) 2.82458e7 0.0230602
\(396\) 0 0
\(397\) −2.11474e9 −1.69625 −0.848124 0.529798i \(-0.822268\pi\)
−0.848124 + 0.529798i \(0.822268\pi\)
\(398\) 0 0
\(399\) 1.23270e8 0.0971522
\(400\) 0 0
\(401\) −1.91213e9 −1.48085 −0.740426 0.672138i \(-0.765376\pi\)
−0.740426 + 0.672138i \(0.765376\pi\)
\(402\) 0 0
\(403\) −3.65821e7 −0.0278421
\(404\) 0 0
\(405\) −4.41949e8 −0.330582
\(406\) 0 0
\(407\) −1.16559e9 −0.856969
\(408\) 0 0
\(409\) −1.25751e9 −0.908824 −0.454412 0.890792i \(-0.650151\pi\)
−0.454412 + 0.890792i \(0.650151\pi\)
\(410\) 0 0
\(411\) −8.09949e8 −0.575455
\(412\) 0 0
\(413\) 1.83901e8 0.128457
\(414\) 0 0
\(415\) 9.93860e8 0.682585
\(416\) 0 0
\(417\) −7.68357e8 −0.518904
\(418\) 0 0
\(419\) 1.16244e9 0.772010 0.386005 0.922497i \(-0.373855\pi\)
0.386005 + 0.922497i \(0.373855\pi\)
\(420\) 0 0
\(421\) −1.16212e9 −0.759039 −0.379519 0.925184i \(-0.623911\pi\)
−0.379519 + 0.925184i \(0.623911\pi\)
\(422\) 0 0
\(423\) 2.08621e9 1.34019
\(424\) 0 0
\(425\) 1.65107e9 1.04329
\(426\) 0 0
\(427\) 4.01401e8 0.249506
\(428\) 0 0
\(429\) 1.42509e8 0.0871447
\(430\) 0 0
\(431\) −1.81487e9 −1.09188 −0.545942 0.837823i \(-0.683828\pi\)
−0.545942 + 0.837823i \(0.683828\pi\)
\(432\) 0 0
\(433\) −1.99774e9 −1.18258 −0.591292 0.806458i \(-0.701382\pi\)
−0.591292 + 0.806458i \(0.701382\pi\)
\(434\) 0 0
\(435\) 5.56917e8 0.324398
\(436\) 0 0
\(437\) −1.54010e9 −0.882802
\(438\) 0 0
\(439\) −3.34073e9 −1.88458 −0.942291 0.334794i \(-0.891333\pi\)
−0.942291 + 0.334794i \(0.891333\pi\)
\(440\) 0 0
\(441\) −2.19180e8 −0.121693
\(442\) 0 0
\(443\) 3.83408e8 0.209531 0.104766 0.994497i \(-0.466591\pi\)
0.104766 + 0.994497i \(0.466591\pi\)
\(444\) 0 0
\(445\) 7.56650e8 0.407038
\(446\) 0 0
\(447\) 7.54855e8 0.399749
\(448\) 0 0
\(449\) −2.18623e9 −1.13982 −0.569908 0.821709i \(-0.693021\pi\)
−0.569908 + 0.821709i \(0.693021\pi\)
\(450\) 0 0
\(451\) −3.78204e9 −1.94137
\(452\) 0 0
\(453\) −1.36816e8 −0.0691500
\(454\) 0 0
\(455\) 7.61734e7 0.0379109
\(456\) 0 0
\(457\) 1.48419e9 0.727416 0.363708 0.931513i \(-0.381511\pi\)
0.363708 + 0.931513i \(0.381511\pi\)
\(458\) 0 0
\(459\) −2.29154e9 −1.10607
\(460\) 0 0
\(461\) 1.31392e9 0.624621 0.312311 0.949980i \(-0.398897\pi\)
0.312311 + 0.949980i \(0.398897\pi\)
\(462\) 0 0
\(463\) 1.45649e9 0.681984 0.340992 0.940066i \(-0.389237\pi\)
0.340992 + 0.940066i \(0.389237\pi\)
\(464\) 0 0
\(465\) 7.59053e7 0.0350096
\(466\) 0 0
\(467\) 3.40374e9 1.54649 0.773244 0.634108i \(-0.218633\pi\)
0.773244 + 0.634108i \(0.218633\pi\)
\(468\) 0 0
\(469\) 1.33450e9 0.597327
\(470\) 0 0
\(471\) 1.52316e9 0.671694
\(472\) 0 0
\(473\) −1.91609e9 −0.832533
\(474\) 0 0
\(475\) 1.04871e9 0.448983
\(476\) 0 0
\(477\) 2.10113e8 0.0886417
\(478\) 0 0
\(479\) 3.44352e9 1.43162 0.715811 0.698294i \(-0.246057\pi\)
0.715811 + 0.698294i \(0.246057\pi\)
\(480\) 0 0
\(481\) 2.83632e8 0.116211
\(482\) 0 0
\(483\) −4.76238e8 −0.192313
\(484\) 0 0
\(485\) 3.40730e8 0.135617
\(486\) 0 0
\(487\) 1.21791e9 0.477818 0.238909 0.971042i \(-0.423210\pi\)
0.238909 + 0.971042i \(0.423210\pi\)
\(488\) 0 0
\(489\) −2.78742e8 −0.107800
\(490\) 0 0
\(491\) 7.94149e7 0.0302773 0.0151386 0.999885i \(-0.495181\pi\)
0.0151386 + 0.999885i \(0.495181\pi\)
\(492\) 0 0
\(493\) −6.07852e9 −2.28472
\(494\) 0 0
\(495\) 1.70025e9 0.630078
\(496\) 0 0
\(497\) −8.59333e8 −0.313989
\(498\) 0 0
\(499\) −5.13507e9 −1.85010 −0.925048 0.379850i \(-0.875976\pi\)
−0.925048 + 0.379850i \(0.875976\pi\)
\(500\) 0 0
\(501\) −8.08008e8 −0.287067
\(502\) 0 0
\(503\) 6.91853e8 0.242396 0.121198 0.992628i \(-0.461326\pi\)
0.121198 + 0.992628i \(0.461326\pi\)
\(504\) 0 0
\(505\) 9.05651e8 0.312926
\(506\) 0 0
\(507\) 1.09480e9 0.373083
\(508\) 0 0
\(509\) −1.84233e9 −0.619234 −0.309617 0.950861i \(-0.600201\pi\)
−0.309617 + 0.950861i \(0.600201\pi\)
\(510\) 0 0
\(511\) −4.92229e8 −0.163190
\(512\) 0 0
\(513\) −1.45552e9 −0.476001
\(514\) 0 0
\(515\) −2.24412e9 −0.723970
\(516\) 0 0
\(517\) −6.38741e9 −2.03286
\(518\) 0 0
\(519\) −1.85219e9 −0.581568
\(520\) 0 0
\(521\) −4.74854e9 −1.47105 −0.735527 0.677496i \(-0.763065\pi\)
−0.735527 + 0.677496i \(0.763065\pi\)
\(522\) 0 0
\(523\) −2.41943e9 −0.739533 −0.369766 0.929125i \(-0.620562\pi\)
−0.369766 + 0.929125i \(0.620562\pi\)
\(524\) 0 0
\(525\) 3.24289e8 0.0978082
\(526\) 0 0
\(527\) −8.28475e8 −0.246571
\(528\) 0 0
\(529\) 2.54514e9 0.747509
\(530\) 0 0
\(531\) −9.98855e8 −0.289515
\(532\) 0 0
\(533\) 9.20313e8 0.263263
\(534\) 0 0
\(535\) 3.31663e8 0.0936394
\(536\) 0 0
\(537\) −9.03204e8 −0.251696
\(538\) 0 0
\(539\) 6.71070e8 0.184590
\(540\) 0 0
\(541\) −4.41722e9 −1.19938 −0.599692 0.800231i \(-0.704710\pi\)
−0.599692 + 0.800231i \(0.704710\pi\)
\(542\) 0 0
\(543\) −2.38983e9 −0.640573
\(544\) 0 0
\(545\) −1.09960e9 −0.290968
\(546\) 0 0
\(547\) 3.48875e9 0.911412 0.455706 0.890130i \(-0.349387\pi\)
0.455706 + 0.890130i \(0.349387\pi\)
\(548\) 0 0
\(549\) −2.18020e9 −0.562333
\(550\) 0 0
\(551\) −3.86091e9 −0.983238
\(552\) 0 0
\(553\) −6.05518e7 −0.0152261
\(554\) 0 0
\(555\) −5.88516e8 −0.146128
\(556\) 0 0
\(557\) 2.78374e9 0.682551 0.341276 0.939963i \(-0.389141\pi\)
0.341276 + 0.939963i \(0.389141\pi\)
\(558\) 0 0
\(559\) 4.66257e8 0.112897
\(560\) 0 0
\(561\) 3.22739e9 0.771759
\(562\) 0 0
\(563\) −2.46624e9 −0.582446 −0.291223 0.956655i \(-0.594062\pi\)
−0.291223 + 0.956655i \(0.594062\pi\)
\(564\) 0 0
\(565\) −3.63899e9 −0.848813
\(566\) 0 0
\(567\) 9.47428e8 0.218276
\(568\) 0 0
\(569\) −3.52045e8 −0.0801133 −0.0400567 0.999197i \(-0.512754\pi\)
−0.0400567 + 0.999197i \(0.512754\pi\)
\(570\) 0 0
\(571\) 7.44085e9 1.67262 0.836308 0.548260i \(-0.184709\pi\)
0.836308 + 0.548260i \(0.184709\pi\)
\(572\) 0 0
\(573\) 2.59158e9 0.575472
\(574\) 0 0
\(575\) −4.05157e9 −0.888762
\(576\) 0 0
\(577\) 3.05727e9 0.662550 0.331275 0.943534i \(-0.392521\pi\)
0.331275 + 0.943534i \(0.392521\pi\)
\(578\) 0 0
\(579\) −1.65066e9 −0.353413
\(580\) 0 0
\(581\) −2.13059e9 −0.450695
\(582\) 0 0
\(583\) −6.43309e8 −0.134456
\(584\) 0 0
\(585\) −4.13735e8 −0.0854431
\(586\) 0 0
\(587\) 2.88379e9 0.588478 0.294239 0.955732i \(-0.404934\pi\)
0.294239 + 0.955732i \(0.404934\pi\)
\(588\) 0 0
\(589\) −5.26224e8 −0.106113
\(590\) 0 0
\(591\) −1.99629e9 −0.397803
\(592\) 0 0
\(593\) −4.70076e9 −0.925714 −0.462857 0.886433i \(-0.653176\pi\)
−0.462857 + 0.886433i \(0.653176\pi\)
\(594\) 0 0
\(595\) 1.72510e9 0.335741
\(596\) 0 0
\(597\) −2.91039e9 −0.559810
\(598\) 0 0
\(599\) 4.06323e9 0.772464 0.386232 0.922402i \(-0.373776\pi\)
0.386232 + 0.922402i \(0.373776\pi\)
\(600\) 0 0
\(601\) −2.06956e9 −0.388881 −0.194441 0.980914i \(-0.562289\pi\)
−0.194441 + 0.980914i \(0.562289\pi\)
\(602\) 0 0
\(603\) −7.24830e9 −1.34625
\(604\) 0 0
\(605\) −2.08775e9 −0.383297
\(606\) 0 0
\(607\) 5.56828e9 1.01056 0.505278 0.862956i \(-0.331390\pi\)
0.505278 + 0.862956i \(0.331390\pi\)
\(608\) 0 0
\(609\) −1.19389e9 −0.214192
\(610\) 0 0
\(611\) 1.55430e9 0.275671
\(612\) 0 0
\(613\) 3.79664e9 0.665714 0.332857 0.942977i \(-0.391987\pi\)
0.332857 + 0.942977i \(0.391987\pi\)
\(614\) 0 0
\(615\) −1.90958e9 −0.331036
\(616\) 0 0
\(617\) −3.96235e9 −0.679133 −0.339566 0.940582i \(-0.610280\pi\)
−0.339566 + 0.940582i \(0.610280\pi\)
\(618\) 0 0
\(619\) 5.55082e9 0.940676 0.470338 0.882486i \(-0.344132\pi\)
0.470338 + 0.882486i \(0.344132\pi\)
\(620\) 0 0
\(621\) 5.62321e9 0.942245
\(622\) 0 0
\(623\) −1.62207e9 −0.268758
\(624\) 0 0
\(625\) 7.58876e8 0.124334
\(626\) 0 0
\(627\) 2.04995e9 0.332129
\(628\) 0 0
\(629\) 6.42341e9 1.02917
\(630\) 0 0
\(631\) 2.43356e8 0.0385602 0.0192801 0.999814i \(-0.493863\pi\)
0.0192801 + 0.999814i \(0.493863\pi\)
\(632\) 0 0
\(633\) −3.14589e7 −0.00492981
\(634\) 0 0
\(635\) −4.02934e9 −0.624491
\(636\) 0 0
\(637\) −1.63297e8 −0.0250317
\(638\) 0 0
\(639\) 4.66746e9 0.707664
\(640\) 0 0
\(641\) −3.89227e9 −0.583714 −0.291857 0.956462i \(-0.594273\pi\)
−0.291857 + 0.956462i \(0.594273\pi\)
\(642\) 0 0
\(643\) 2.22698e9 0.330353 0.165177 0.986264i \(-0.447181\pi\)
0.165177 + 0.986264i \(0.447181\pi\)
\(644\) 0 0
\(645\) −9.67450e8 −0.141961
\(646\) 0 0
\(647\) −7.46182e9 −1.08313 −0.541564 0.840659i \(-0.682168\pi\)
−0.541564 + 0.840659i \(0.682168\pi\)
\(648\) 0 0
\(649\) 3.05822e9 0.439150
\(650\) 0 0
\(651\) −1.62722e8 −0.0231160
\(652\) 0 0
\(653\) −1.27961e8 −0.0179839 −0.00899193 0.999960i \(-0.502862\pi\)
−0.00899193 + 0.999960i \(0.502862\pi\)
\(654\) 0 0
\(655\) 2.78700e9 0.387518
\(656\) 0 0
\(657\) 2.67354e9 0.367796
\(658\) 0 0
\(659\) −1.10052e10 −1.49796 −0.748978 0.662595i \(-0.769455\pi\)
−0.748978 + 0.662595i \(0.769455\pi\)
\(660\) 0 0
\(661\) 1.22326e10 1.64745 0.823727 0.566987i \(-0.191891\pi\)
0.823727 + 0.566987i \(0.191891\pi\)
\(662\) 0 0
\(663\) −7.85347e8 −0.104656
\(664\) 0 0
\(665\) 1.09573e9 0.144487
\(666\) 0 0
\(667\) 1.49161e10 1.94632
\(668\) 0 0
\(669\) −8.69514e8 −0.112276
\(670\) 0 0
\(671\) 6.67519e9 0.852972
\(672\) 0 0
\(673\) −1.20862e10 −1.52840 −0.764201 0.644978i \(-0.776867\pi\)
−0.764201 + 0.644978i \(0.776867\pi\)
\(674\) 0 0
\(675\) −3.82907e9 −0.479215
\(676\) 0 0
\(677\) 1.16275e10 1.44021 0.720104 0.693867i \(-0.244094\pi\)
0.720104 + 0.693867i \(0.244094\pi\)
\(678\) 0 0
\(679\) −7.30440e8 −0.0895448
\(680\) 0 0
\(681\) −3.69534e9 −0.448373
\(682\) 0 0
\(683\) 1.42381e10 1.70994 0.854970 0.518678i \(-0.173576\pi\)
0.854970 + 0.518678i \(0.173576\pi\)
\(684\) 0 0
\(685\) −7.19955e9 −0.855832
\(686\) 0 0
\(687\) −5.05994e9 −0.595384
\(688\) 0 0
\(689\) 1.56541e8 0.0182332
\(690\) 0 0
\(691\) −9.50918e9 −1.09640 −0.548201 0.836347i \(-0.684687\pi\)
−0.548201 + 0.836347i \(0.684687\pi\)
\(692\) 0 0
\(693\) −3.64491e9 −0.416026
\(694\) 0 0
\(695\) −6.82984e9 −0.771727
\(696\) 0 0
\(697\) 2.08423e10 2.33148
\(698\) 0 0
\(699\) −5.55288e9 −0.614961
\(700\) 0 0
\(701\) 9.29838e9 1.01952 0.509758 0.860318i \(-0.329735\pi\)
0.509758 + 0.860318i \(0.329735\pi\)
\(702\) 0 0
\(703\) 4.07997e9 0.442908
\(704\) 0 0
\(705\) −3.22506e9 −0.346638
\(706\) 0 0
\(707\) −1.94149e9 −0.206618
\(708\) 0 0
\(709\) 1.42059e10 1.49695 0.748476 0.663162i \(-0.230786\pi\)
0.748476 + 0.663162i \(0.230786\pi\)
\(710\) 0 0
\(711\) 3.28887e8 0.0343165
\(712\) 0 0
\(713\) 2.03300e9 0.210050
\(714\) 0 0
\(715\) 1.26674e9 0.129604
\(716\) 0 0
\(717\) −2.37210e9 −0.240335
\(718\) 0 0
\(719\) 1.13805e10 1.14186 0.570928 0.821000i \(-0.306584\pi\)
0.570928 + 0.821000i \(0.306584\pi\)
\(720\) 0 0
\(721\) 4.81083e9 0.478021
\(722\) 0 0
\(723\) −5.03504e9 −0.495472
\(724\) 0 0
\(725\) −1.01570e10 −0.989877
\(726\) 0 0
\(727\) 2.05150e9 0.198016 0.0990079 0.995087i \(-0.468433\pi\)
0.0990079 + 0.995087i \(0.468433\pi\)
\(728\) 0 0
\(729\) −2.27616e9 −0.217599
\(730\) 0 0
\(731\) 1.05593e10 0.999827
\(732\) 0 0
\(733\) 2.80160e9 0.262750 0.131375 0.991333i \(-0.458061\pi\)
0.131375 + 0.991333i \(0.458061\pi\)
\(734\) 0 0
\(735\) 3.38829e8 0.0314757
\(736\) 0 0
\(737\) 2.21923e10 2.04205
\(738\) 0 0
\(739\) −1.17528e10 −1.07124 −0.535620 0.844459i \(-0.679922\pi\)
−0.535620 + 0.844459i \(0.679922\pi\)
\(740\) 0 0
\(741\) −4.98831e8 −0.0450391
\(742\) 0 0
\(743\) −1.27682e10 −1.14201 −0.571005 0.820947i \(-0.693446\pi\)
−0.571005 + 0.820947i \(0.693446\pi\)
\(744\) 0 0
\(745\) 6.70982e9 0.594517
\(746\) 0 0
\(747\) 1.15723e10 1.01577
\(748\) 0 0
\(749\) −7.11002e8 −0.0618279
\(750\) 0 0
\(751\) −8.94826e9 −0.770901 −0.385451 0.922728i \(-0.625954\pi\)
−0.385451 + 0.922728i \(0.625954\pi\)
\(752\) 0 0
\(753\) −2.23584e9 −0.190835
\(754\) 0 0
\(755\) −1.21614e9 −0.102842
\(756\) 0 0
\(757\) −1.12241e10 −0.940407 −0.470203 0.882558i \(-0.655819\pi\)
−0.470203 + 0.882558i \(0.655819\pi\)
\(758\) 0 0
\(759\) −7.91971e9 −0.657450
\(760\) 0 0
\(761\) −3.06542e9 −0.252141 −0.126070 0.992021i \(-0.540237\pi\)
−0.126070 + 0.992021i \(0.540237\pi\)
\(762\) 0 0
\(763\) 2.35726e9 0.192119
\(764\) 0 0
\(765\) −9.36985e9 −0.756689
\(766\) 0 0
\(767\) −7.44182e8 −0.0595518
\(768\) 0 0
\(769\) −1.33911e10 −1.06188 −0.530939 0.847410i \(-0.678161\pi\)
−0.530939 + 0.847410i \(0.678161\pi\)
\(770\) 0 0
\(771\) −6.90628e9 −0.542692
\(772\) 0 0
\(773\) 2.07529e9 0.161604 0.0808018 0.996730i \(-0.474252\pi\)
0.0808018 + 0.996730i \(0.474252\pi\)
\(774\) 0 0
\(775\) −1.38435e9 −0.106829
\(776\) 0 0
\(777\) 1.26163e9 0.0964849
\(778\) 0 0
\(779\) 1.32385e10 1.00336
\(780\) 0 0
\(781\) −1.42905e10 −1.07342
\(782\) 0 0
\(783\) 1.40970e10 1.04944
\(784\) 0 0
\(785\) 1.35392e10 0.998960
\(786\) 0 0
\(787\) 1.02989e10 0.753145 0.376572 0.926387i \(-0.377103\pi\)
0.376572 + 0.926387i \(0.377103\pi\)
\(788\) 0 0
\(789\) 8.18710e9 0.593418
\(790\) 0 0
\(791\) 7.80110e9 0.560451
\(792\) 0 0
\(793\) −1.62433e9 −0.115669
\(794\) 0 0
\(795\) −3.24812e8 −0.0229270
\(796\) 0 0
\(797\) −6.69270e9 −0.468271 −0.234135 0.972204i \(-0.575226\pi\)
−0.234135 + 0.972204i \(0.575226\pi\)
\(798\) 0 0
\(799\) 3.52002e10 2.44136
\(800\) 0 0
\(801\) 8.81024e9 0.605723
\(802\) 0 0
\(803\) −8.18564e9 −0.557890
\(804\) 0 0
\(805\) −4.23322e9 −0.286013
\(806\) 0 0
\(807\) 1.47429e9 0.0987476
\(808\) 0 0
\(809\) 1.56291e10 1.03780 0.518901 0.854834i \(-0.326341\pi\)
0.518901 + 0.854834i \(0.326341\pi\)
\(810\) 0 0
\(811\) −3.31300e9 −0.218096 −0.109048 0.994036i \(-0.534780\pi\)
−0.109048 + 0.994036i \(0.534780\pi\)
\(812\) 0 0
\(813\) −4.35019e9 −0.283917
\(814\) 0 0
\(815\) −2.47770e9 −0.160324
\(816\) 0 0
\(817\) 6.70698e9 0.430279
\(818\) 0 0
\(819\) 8.86944e8 0.0564161
\(820\) 0 0
\(821\) 1.79884e10 1.13446 0.567232 0.823558i \(-0.308014\pi\)
0.567232 + 0.823558i \(0.308014\pi\)
\(822\) 0 0
\(823\) −9.56219e9 −0.597940 −0.298970 0.954262i \(-0.596643\pi\)
−0.298970 + 0.954262i \(0.596643\pi\)
\(824\) 0 0
\(825\) 5.39285e9 0.334372
\(826\) 0 0
\(827\) −1.65562e10 −1.01787 −0.508934 0.860805i \(-0.669960\pi\)
−0.508934 + 0.860805i \(0.669960\pi\)
\(828\) 0 0
\(829\) 3.10473e10 1.89271 0.946353 0.323134i \(-0.104736\pi\)
0.946353 + 0.323134i \(0.104736\pi\)
\(830\) 0 0
\(831\) −3.64611e8 −0.0220408
\(832\) 0 0
\(833\) −3.69818e9 −0.221682
\(834\) 0 0
\(835\) −7.18229e9 −0.426934
\(836\) 0 0
\(837\) 1.92135e9 0.113258
\(838\) 0 0
\(839\) −1.11255e10 −0.650358 −0.325179 0.945652i \(-0.605425\pi\)
−0.325179 + 0.945652i \(0.605425\pi\)
\(840\) 0 0
\(841\) 2.01436e10 1.16775
\(842\) 0 0
\(843\) 4.03924e9 0.232222
\(844\) 0 0
\(845\) 9.73152e9 0.554858
\(846\) 0 0
\(847\) 4.47562e9 0.253082
\(848\) 0 0
\(849\) 1.04357e10 0.585254
\(850\) 0 0
\(851\) −1.57624e10 −0.876738
\(852\) 0 0
\(853\) 1.12283e10 0.619430 0.309715 0.950829i \(-0.399766\pi\)
0.309715 + 0.950829i \(0.399766\pi\)
\(854\) 0 0
\(855\) −5.95147e9 −0.325644
\(856\) 0 0
\(857\) −1.34110e10 −0.727828 −0.363914 0.931433i \(-0.618560\pi\)
−0.363914 + 0.931433i \(0.618560\pi\)
\(858\) 0 0
\(859\) −3.30638e10 −1.77982 −0.889912 0.456133i \(-0.849234\pi\)
−0.889912 + 0.456133i \(0.849234\pi\)
\(860\) 0 0
\(861\) 4.09367e9 0.218576
\(862\) 0 0
\(863\) 1.86096e10 0.985598 0.492799 0.870143i \(-0.335974\pi\)
0.492799 + 0.870143i \(0.335974\pi\)
\(864\) 0 0
\(865\) −1.64639e10 −0.864923
\(866\) 0 0
\(867\) −1.03996e10 −0.541940
\(868\) 0 0
\(869\) −1.00696e9 −0.0520527
\(870\) 0 0
\(871\) −5.40024e9 −0.276917
\(872\) 0 0
\(873\) 3.96737e9 0.201815
\(874\) 0 0
\(875\) 7.17007e9 0.361822
\(876\) 0 0
\(877\) 2.01231e10 1.00739 0.503694 0.863882i \(-0.331974\pi\)
0.503694 + 0.863882i \(0.331974\pi\)
\(878\) 0 0
\(879\) 1.74486e9 0.0866564
\(880\) 0 0
\(881\) 3.55752e10 1.75280 0.876398 0.481587i \(-0.159939\pi\)
0.876398 + 0.481587i \(0.159939\pi\)
\(882\) 0 0
\(883\) 4.88663e8 0.0238862 0.0119431 0.999929i \(-0.496198\pi\)
0.0119431 + 0.999929i \(0.496198\pi\)
\(884\) 0 0
\(885\) 1.54412e9 0.0748825
\(886\) 0 0
\(887\) −3.66732e10 −1.76448 −0.882238 0.470804i \(-0.843964\pi\)
−0.882238 + 0.470804i \(0.843964\pi\)
\(888\) 0 0
\(889\) 8.63790e9 0.412337
\(890\) 0 0
\(891\) 1.57555e10 0.746208
\(892\) 0 0
\(893\) 2.23582e10 1.05065
\(894\) 0 0
\(895\) −8.02848e9 −0.374328
\(896\) 0 0
\(897\) 1.92717e9 0.0891550
\(898\) 0 0
\(899\) 5.09657e9 0.233948
\(900\) 0 0
\(901\) 3.54519e9 0.161474
\(902\) 0 0
\(903\) 2.07397e9 0.0937336
\(904\) 0 0
\(905\) −2.12430e10 −0.952676
\(906\) 0 0
\(907\) −9.61954e9 −0.428084 −0.214042 0.976824i \(-0.568663\pi\)
−0.214042 + 0.976824i \(0.568663\pi\)
\(908\) 0 0
\(909\) 1.05452e10 0.465672
\(910\) 0 0
\(911\) 1.36974e10 0.600239 0.300119 0.953902i \(-0.402973\pi\)
0.300119 + 0.953902i \(0.402973\pi\)
\(912\) 0 0
\(913\) −3.54311e10 −1.54077
\(914\) 0 0
\(915\) 3.37036e9 0.145446
\(916\) 0 0
\(917\) −5.97463e9 −0.255869
\(918\) 0 0
\(919\) 9.66864e9 0.410923 0.205462 0.978665i \(-0.434130\pi\)
0.205462 + 0.978665i \(0.434130\pi\)
\(920\) 0 0
\(921\) 1.12313e10 0.473720
\(922\) 0 0
\(923\) 3.47742e9 0.145563
\(924\) 0 0
\(925\) 1.07333e10 0.445899
\(926\) 0 0
\(927\) −2.61300e10 −1.07736
\(928\) 0 0
\(929\) 5.56916e9 0.227895 0.113948 0.993487i \(-0.463650\pi\)
0.113948 + 0.993487i \(0.463650\pi\)
\(930\) 0 0
\(931\) −2.34898e9 −0.0954015
\(932\) 0 0
\(933\) −8.69698e9 −0.350576
\(934\) 0 0
\(935\) 2.86879e10 1.14778
\(936\) 0 0
\(937\) 3.10166e9 0.123170 0.0615850 0.998102i \(-0.480384\pi\)
0.0615850 + 0.998102i \(0.480384\pi\)
\(938\) 0 0
\(939\) 8.79553e9 0.346683
\(940\) 0 0
\(941\) 1.16729e10 0.456683 0.228341 0.973581i \(-0.426670\pi\)
0.228341 + 0.973581i \(0.426670\pi\)
\(942\) 0 0
\(943\) −5.11450e10 −1.98615
\(944\) 0 0
\(945\) −4.00075e9 −0.154216
\(946\) 0 0
\(947\) 4.15512e10 1.58986 0.794929 0.606703i \(-0.207508\pi\)
0.794929 + 0.606703i \(0.207508\pi\)
\(948\) 0 0
\(949\) 1.99188e9 0.0756538
\(950\) 0 0
\(951\) −1.06113e10 −0.400070
\(952\) 0 0
\(953\) 1.50143e10 0.561926 0.280963 0.959719i \(-0.409346\pi\)
0.280963 + 0.959719i \(0.409346\pi\)
\(954\) 0 0
\(955\) 2.30363e10 0.855856
\(956\) 0 0
\(957\) −1.98541e10 −0.732248
\(958\) 0 0
\(959\) 1.54340e10 0.565086
\(960\) 0 0
\(961\) −2.68180e10 −0.974752
\(962\) 0 0
\(963\) 3.86180e9 0.139347
\(964\) 0 0
\(965\) −1.46725e10 −0.525605
\(966\) 0 0
\(967\) −3.06060e10 −1.08846 −0.544232 0.838935i \(-0.683179\pi\)
−0.544232 + 0.838935i \(0.683179\pi\)
\(968\) 0 0
\(969\) −1.12970e10 −0.398869
\(970\) 0 0
\(971\) 4.67597e10 1.63909 0.819547 0.573011i \(-0.194225\pi\)
0.819547 + 0.573011i \(0.194225\pi\)
\(972\) 0 0
\(973\) 1.46415e10 0.509553
\(974\) 0 0
\(975\) −1.31228e9 −0.0453432
\(976\) 0 0
\(977\) 1.03915e10 0.356491 0.178246 0.983986i \(-0.442958\pi\)
0.178246 + 0.983986i \(0.442958\pi\)
\(978\) 0 0
\(979\) −2.69746e10 −0.918788
\(980\) 0 0
\(981\) −1.28034e10 −0.432996
\(982\) 0 0
\(983\) −3.05164e8 −0.0102470 −0.00512350 0.999987i \(-0.501631\pi\)
−0.00512350 + 0.999987i \(0.501631\pi\)
\(984\) 0 0
\(985\) −1.77448e10 −0.591623
\(986\) 0 0
\(987\) 6.91372e9 0.228877
\(988\) 0 0
\(989\) −2.59115e10 −0.851738
\(990\) 0 0
\(991\) 5.48412e10 1.78999 0.894993 0.446081i \(-0.147181\pi\)
0.894993 + 0.446081i \(0.147181\pi\)
\(992\) 0 0
\(993\) 8.94433e9 0.289885
\(994\) 0 0
\(995\) −2.58701e10 −0.832563
\(996\) 0 0
\(997\) 7.31634e9 0.233809 0.116904 0.993143i \(-0.462703\pi\)
0.116904 + 0.993143i \(0.462703\pi\)
\(998\) 0 0
\(999\) −1.48968e10 −0.472731
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.8.a.e.1.1 1
4.3 odd 2 448.8.a.f.1.1 1
8.3 odd 2 56.8.a.a.1.1 1
8.5 even 2 112.8.a.b.1.1 1
24.11 even 2 504.8.a.a.1.1 1
56.27 even 2 392.8.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.8.a.a.1.1 1 8.3 odd 2
112.8.a.b.1.1 1 8.5 even 2
392.8.a.c.1.1 1 56.27 even 2
448.8.a.e.1.1 1 1.1 even 1 trivial
448.8.a.f.1.1 1 4.3 odd 2
504.8.a.a.1.1 1 24.11 even 2