Properties

Label 45.10
Level 45
Weight 10
Dimension 457
Nonzero newspaces 6
Newform subspaces 17
Sturm bound 1440
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 17 \)
Sturm bound: \(1440\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(45))\).

Total New Old
Modular forms 680 483 197
Cusp forms 616 457 159
Eisenstein series 64 26 38

Trace form

\( 457 q - 88 q^{2} - 2 q^{3} + 2642 q^{4} - 1536 q^{5} - 4894 q^{6} + 22488 q^{7} - 24336 q^{8} - 8926 q^{9} + 113846 q^{10} - 188644 q^{11} + 179312 q^{12} + 82664 q^{13} + 192012 q^{14} - 482099 q^{15}+ \cdots - 4109380118 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(45))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
45.10.a \(\chi_{45}(1, \cdot)\) 45.10.a.a 1 1
45.10.a.b 1
45.10.a.c 1
45.10.a.d 2
45.10.a.e 2
45.10.a.f 2
45.10.a.g 3
45.10.a.h 3
45.10.b \(\chi_{45}(19, \cdot)\) 45.10.b.a 2 1
45.10.b.b 4
45.10.b.c 8
45.10.b.d 8
45.10.e \(\chi_{45}(16, \cdot)\) 45.10.e.a 34 2
45.10.e.b 38
45.10.f \(\chi_{45}(8, \cdot)\) 45.10.f.a 36 2
45.10.j \(\chi_{45}(4, \cdot)\) 45.10.j.a 104 2
45.10.l \(\chi_{45}(2, \cdot)\) 45.10.l.a 208 4

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(45))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(45)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)