Defining parameters
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(45, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 88 | 48 |
Cusp forms | 128 | 88 | 40 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(45, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
45.12.e.a | $42$ | $34.575$ | None | \(32\) | \(177\) | \(-65625\) | \(58715\) | ||
45.12.e.b | $46$ | $34.575$ | None | \(32\) | \(349\) | \(71875\) | \(-75741\) |
Decomposition of \(S_{12}^{\mathrm{old}}(45, [\chi])\) into lower level spaces
\( S_{12}^{\mathrm{old}}(45, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)