Properties

Label 45.12.e
Level $45$
Weight $12$
Character orbit 45.e
Rep. character $\chi_{45}(16,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $88$
Newform subspaces $2$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 45.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(45, [\chi])\).

Total New Old
Modular forms 136 88 48
Cusp forms 128 88 40
Eisenstein series 8 0 8

Trace form

\( 88 q + 64 q^{2} + 526 q^{3} - 45056 q^{4} + 6250 q^{5} - 40018 q^{6} - 17026 q^{7} + 66420 q^{8} - 273988 q^{9} - 905780 q^{11} + 375242 q^{12} - 559414 q^{13} + 2265438 q^{14} + 268750 q^{15} - 46137344 q^{16}+ \cdots - 317921493632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(45, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
45.12.e.a 45.e 9.c $42$ $34.575$ None 45.12.e.a \(32\) \(177\) \(-65625\) \(58715\) $\mathrm{SU}(2)[C_{3}]$
45.12.e.b 45.e 9.c $46$ $34.575$ None 45.12.e.b \(32\) \(349\) \(71875\) \(-75741\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{12}^{\mathrm{old}}(45, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(45, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)