Properties

Label 45.3
Level 45
Weight 3
Dimension 92
Nonzero newspaces 6
Newform subspaces 7
Sturm bound 432
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 7 \)
Sturm bound: \(432\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(45))\).

Total New Old
Modular forms 176 120 56
Cusp forms 112 92 20
Eisenstein series 64 28 36

Trace form

\( 92 q + 2 q^{2} - 2 q^{3} - 2 q^{4} - 10 q^{5} - 34 q^{6} - 36 q^{8} - 10 q^{9} - 68 q^{10} - 50 q^{11} - 52 q^{12} - 28 q^{13} - 24 q^{14} + 4 q^{15} + 34 q^{16} + 68 q^{17} + 40 q^{18} + 20 q^{19} + 66 q^{20}+ \cdots - 1292 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(45))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
45.3.c \(\chi_{45}(26, \cdot)\) 45.3.c.a 4 1
45.3.d \(\chi_{45}(44, \cdot)\) 45.3.d.a 4 1
45.3.g \(\chi_{45}(28, \cdot)\) 45.3.g.a 4 2
45.3.g.b 4
45.3.h \(\chi_{45}(14, \cdot)\) 45.3.h.a 20 2
45.3.i \(\chi_{45}(11, \cdot)\) 45.3.i.a 16 2
45.3.k \(\chi_{45}(7, \cdot)\) 45.3.k.a 40 4

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(45))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(45)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)