Defining parameters
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(45))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 5 | 17 |
Cusp forms | 14 | 5 | 9 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(45))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | |||||||
45.4.a.a | $1$ | $2.655$ | \(\Q\) | None | \(-5\) | \(0\) | \(5\) | \(-30\) | $+$ | $-$ | \(q-5q^{2}+17q^{4}+5q^{5}-30q^{7}-45q^{8}+\cdots\) | |
45.4.a.b | $1$ | $2.655$ | \(\Q\) | None | \(-3\) | \(0\) | \(5\) | \(20\) | $-$ | $-$ | \(q-3q^{2}+q^{4}+5q^{5}+20q^{7}+21q^{8}+\cdots\) | |
45.4.a.c | $1$ | $2.655$ | \(\Q\) | None | \(-1\) | \(0\) | \(-5\) | \(-24\) | $-$ | $+$ | \(q-q^{2}-7q^{4}-5q^{5}-24q^{7}+15q^{8}+\cdots\) | |
45.4.a.d | $1$ | $2.655$ | \(\Q\) | None | \(4\) | \(0\) | \(5\) | \(6\) | $-$ | $-$ | \(q+4q^{2}+8q^{4}+5q^{5}+6q^{7}+20q^{10}+\cdots\) | |
45.4.a.e | $1$ | $2.655$ | \(\Q\) | None | \(5\) | \(0\) | \(-5\) | \(-30\) | $+$ | $+$ | \(q+5q^{2}+17q^{4}-5q^{5}-30q^{7}+45q^{8}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(45))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(45)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)