Properties

Label 45.4.a
Level 4545
Weight 44
Character orbit 45.a
Rep. character χ45(1,)\chi_{45}(1,\cdot)
Character field Q\Q
Dimension 55
Newform subspaces 55
Sturm bound 2424
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 45=325 45 = 3^{2} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 45.a (trivial)
Character field: Q\Q
Newform subspaces: 5 5
Sturm bound: 2424
Trace bound: 22
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(45))M_{4}(\Gamma_0(45)).

Total New Old
Modular forms 22 5 17
Cusp forms 14 5 9
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

3355FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++771166551144220022
++--551144331122220022
-++-551144331122220022
--++552233332211220022
Plus space++12123399883355440044
Minus space-10102288662244440044

Trace form

5q+36q4+5q558q7+36q840q1060q11+18q1312q14+84q1666q17132q19+80q20+352q22+366q23+125q25396q26784q28+1632q98+O(q100) 5 q + 36 q^{4} + 5 q^{5} - 58 q^{7} + 36 q^{8} - 40 q^{10} - 60 q^{11} + 18 q^{13} - 12 q^{14} + 84 q^{16} - 66 q^{17} - 132 q^{19} + 80 q^{20} + 352 q^{22} + 366 q^{23} + 125 q^{25} - 396 q^{26} - 784 q^{28}+ \cdots - 1632 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(45))S_{4}^{\mathrm{new}}(\Gamma_0(45)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 3 5
45.4.a.a 45.a 1.a 11 2.6552.655 Q\Q None 45.4.a.a 5-5 00 55 30-30 ++ - SU(2)\mathrm{SU}(2) q5q2+17q4+5q530q745q8+q-5q^{2}+17q^{4}+5q^{5}-30q^{7}-45q^{8}+\cdots
45.4.a.b 45.a 1.a 11 2.6552.655 Q\Q None 15.4.a.b 3-3 00 55 2020 - - SU(2)\mathrm{SU}(2) q3q2+q4+5q5+20q7+21q8+q-3q^{2}+q^{4}+5q^{5}+20q^{7}+21q^{8}+\cdots
45.4.a.c 45.a 1.a 11 2.6552.655 Q\Q None 15.4.a.a 1-1 00 5-5 24-24 - ++ SU(2)\mathrm{SU}(2) qq27q45q524q7+15q8+q-q^{2}-7q^{4}-5q^{5}-24q^{7}+15q^{8}+\cdots
45.4.a.d 45.a 1.a 11 2.6552.655 Q\Q None 5.4.a.a 44 00 55 66 - - SU(2)\mathrm{SU}(2) q+4q2+8q4+5q5+6q7+20q10+q+4q^{2}+8q^{4}+5q^{5}+6q^{7}+20q^{10}+\cdots
45.4.a.e 45.a 1.a 11 2.6552.655 Q\Q None 45.4.a.a 55 00 5-5 30-30 ++ ++ SU(2)\mathrm{SU}(2) q+5q2+17q45q530q7+45q8+q+5q^{2}+17q^{4}-5q^{5}-30q^{7}+45q^{8}+\cdots

Decomposition of S4old(Γ0(45))S_{4}^{\mathrm{old}}(\Gamma_0(45)) into lower level spaces

S4old(Γ0(45)) S_{4}^{\mathrm{old}}(\Gamma_0(45)) \simeq S4new(Γ0(5))S_{4}^{\mathrm{new}}(\Gamma_0(5))3^{\oplus 3}\oplusS4new(Γ0(9))S_{4}^{\mathrm{new}}(\Gamma_0(9))2^{\oplus 2}\oplusS4new(Γ0(15))S_{4}^{\mathrm{new}}(\Gamma_0(15))2^{\oplus 2}