Properties

Label 45.5.d
Level $45$
Weight $5$
Character orbit 45.d
Rep. character $\chi_{45}(44,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $1$
Sturm bound $30$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 45.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(30\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(45, [\chi])\).

Total New Old
Modular forms 28 8 20
Cusp forms 20 8 12
Eisenstein series 8 0 8

Trace form

\( 8 q + 36 q^{4} + 280 q^{10} + 148 q^{16} - 1520 q^{19} + 1940 q^{25} + 2968 q^{31} - 12424 q^{34} + 7220 q^{40} + 10088 q^{46} - 8944 q^{49} + 19800 q^{55} + 544 q^{61} - 29188 q^{64} + 1800 q^{70} + 3600 q^{76}+ \cdots + 40928 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(45, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
45.5.d.a 45.d 15.d $8$ $4.652$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 45.5.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+(5+\beta _{2})q^{4}+(2\beta _{3}+\beta _{5})q^{5}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(45, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(45, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)