Defining parameters
Level: | \( N \) | \(=\) | \( 45 = 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 45.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(30\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(45, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 8 | 20 |
Cusp forms | 20 | 8 | 12 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(45, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
45.5.d.a | $8$ | $4.652$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}+(5+\beta _{2})q^{4}+(2\beta _{3}+\beta _{5})q^{5}+\cdots\) |
Decomposition of \(S_{5}^{\mathrm{old}}(45, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(45, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)