Properties

Label 45.6.j
Level 4545
Weight 66
Character orbit 45.j
Rep. character χ45(4,)\chi_{45}(4,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 5656
Newform subspaces 11
Sturm bound 3636
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 45=325 45 = 3^{2} \cdot 5
Weight: k k == 6 6
Character orbit: [χ][\chi] == 45.j (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 45 45
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 1 1
Sturm bound: 3636
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M6(45,[χ])M_{6}(45, [\chi]).

Total New Old
Modular forms 64 64 0
Cusp forms 56 56 0
Eisenstein series 8 8 0

Trace form

56q+414q430q5+12q6+468q968q10780q11+1398q14+672q155570q168q19+3522q204848q217554q241654q25+16968q26+2700q29++1001340q99+O(q100) 56 q + 414 q^{4} - 30 q^{5} + 12 q^{6} + 468 q^{9} - 68 q^{10} - 780 q^{11} + 1398 q^{14} + 672 q^{15} - 5570 q^{16} - 8 q^{19} + 3522 q^{20} - 4848 q^{21} - 7554 q^{24} - 1654 q^{25} + 16968 q^{26} + 2700 q^{29}+ \cdots + 1001340 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(45,[χ])S_{6}^{\mathrm{new}}(45, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
45.6.j.a 45.j 45.j 5656 7.2177.217 None 45.6.j.a 00 00 30-30 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}]