Properties

Label 450.4
Level 450
Weight 4
Dimension 3940
Nonzero newspaces 12
Sturm bound 43200
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(43200\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(450))\).

Total New Old
Modular forms 16648 3940 12708
Cusp forms 15752 3940 11812
Eisenstein series 896 0 896

Trace form

\( 3940 q + 3 q^{3} + 5 q^{5} - 18 q^{6} + 4 q^{7} - 24 q^{8} + 151 q^{9} + 46 q^{10} - 13 q^{11} - 104 q^{12} - 638 q^{13} - 604 q^{14} - 336 q^{15} - 128 q^{16} - 212 q^{17} + 92 q^{18} + 814 q^{19} + 176 q^{20}+ \cdots - 8480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(450))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
450.4.a \(\chi_{450}(1, \cdot)\) 450.4.a.a 1 1
450.4.a.b 1
450.4.a.c 1
450.4.a.d 1
450.4.a.e 1
450.4.a.f 1
450.4.a.g 1
450.4.a.h 1
450.4.a.i 1
450.4.a.j 1
450.4.a.k 1
450.4.a.l 1
450.4.a.m 1
450.4.a.n 1
450.4.a.o 1
450.4.a.p 1
450.4.a.q 1
450.4.a.r 1
450.4.a.s 1
450.4.a.t 1
450.4.a.u 2
450.4.a.v 2
450.4.c \(\chi_{450}(199, \cdot)\) 450.4.c.a 2 1
450.4.c.b 2
450.4.c.c 2
450.4.c.d 2
450.4.c.e 2
450.4.c.f 2
450.4.c.g 2
450.4.c.h 2
450.4.c.i 2
450.4.c.j 2
450.4.c.k 2
450.4.e \(\chi_{450}(151, \cdot)\) n/a 114 2
450.4.f \(\chi_{450}(107, \cdot)\) 450.4.f.a 4 2
450.4.f.b 4
450.4.f.c 4
450.4.f.d 8
450.4.f.e 8
450.4.f.f 8
450.4.h \(\chi_{450}(91, \cdot)\) n/a 148 4
450.4.j \(\chi_{450}(49, \cdot)\) n/a 108 2
450.4.l \(\chi_{450}(19, \cdot)\) n/a 152 4
450.4.p \(\chi_{450}(257, \cdot)\) n/a 216 4
450.4.q \(\chi_{450}(31, \cdot)\) n/a 720 8
450.4.s \(\chi_{450}(17, \cdot)\) n/a 240 8
450.4.v \(\chi_{450}(79, \cdot)\) n/a 720 8
450.4.w \(\chi_{450}(23, \cdot)\) n/a 1440 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(450))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(450)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(450))\)\(^{\oplus 1}\)