Properties

Label 450.4
Level 450
Weight 4
Dimension 3940
Nonzero newspaces 12
Sturm bound 43200
Trace bound 3

Downloads

Learn more

Defining parameters

Level: N N = 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}
Weight: k k = 4 4
Nonzero newspaces: 12 12
Sturm bound: 4320043200
Trace bound: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ1(450))M_{4}(\Gamma_1(450)).

Total New Old
Modular forms 16648 3940 12708
Cusp forms 15752 3940 11812
Eisenstein series 896 0 896

Trace form

3940q+3q3+5q518q6+4q724q8+151q9+46q1013q11104q12638q13604q14336q15128q16212q17+92q18+814q19+176q20+8480q99+O(q100) 3940 q + 3 q^{3} + 5 q^{5} - 18 q^{6} + 4 q^{7} - 24 q^{8} + 151 q^{9} + 46 q^{10} - 13 q^{11} - 104 q^{12} - 638 q^{13} - 604 q^{14} - 336 q^{15} - 128 q^{16} - 212 q^{17} + 92 q^{18} + 814 q^{19} + 176 q^{20}+ \cdots - 8480 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ1(450))S_{4}^{\mathrm{new}}(\Gamma_1(450))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
450.4.a χ450(1,)\chi_{450}(1, \cdot) 450.4.a.a 1 1
450.4.a.b 1
450.4.a.c 1
450.4.a.d 1
450.4.a.e 1
450.4.a.f 1
450.4.a.g 1
450.4.a.h 1
450.4.a.i 1
450.4.a.j 1
450.4.a.k 1
450.4.a.l 1
450.4.a.m 1
450.4.a.n 1
450.4.a.o 1
450.4.a.p 1
450.4.a.q 1
450.4.a.r 1
450.4.a.s 1
450.4.a.t 1
450.4.a.u 2
450.4.a.v 2
450.4.c χ450(199,)\chi_{450}(199, \cdot) 450.4.c.a 2 1
450.4.c.b 2
450.4.c.c 2
450.4.c.d 2
450.4.c.e 2
450.4.c.f 2
450.4.c.g 2
450.4.c.h 2
450.4.c.i 2
450.4.c.j 2
450.4.c.k 2
450.4.e χ450(151,)\chi_{450}(151, \cdot) n/a 114 2
450.4.f χ450(107,)\chi_{450}(107, \cdot) 450.4.f.a 4 2
450.4.f.b 4
450.4.f.c 4
450.4.f.d 8
450.4.f.e 8
450.4.f.f 8
450.4.h χ450(91,)\chi_{450}(91, \cdot) n/a 148 4
450.4.j χ450(49,)\chi_{450}(49, \cdot) n/a 108 2
450.4.l χ450(19,)\chi_{450}(19, \cdot) n/a 152 4
450.4.p χ450(257,)\chi_{450}(257, \cdot) n/a 216 4
450.4.q χ450(31,)\chi_{450}(31, \cdot) n/a 720 8
450.4.s χ450(17,)\chi_{450}(17, \cdot) n/a 240 8
450.4.v χ450(79,)\chi_{450}(79, \cdot) n/a 720 8
450.4.w χ450(23,)\chi_{450}(23, \cdot) n/a 1440 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S4old(Γ1(450))S_{4}^{\mathrm{old}}(\Gamma_1(450)) into lower level spaces

S4old(Γ1(450)) S_{4}^{\mathrm{old}}(\Gamma_1(450)) \cong S4new(Γ1(1))S_{4}^{\mathrm{new}}(\Gamma_1(1))18^{\oplus 18}\oplusS4new(Γ1(2))S_{4}^{\mathrm{new}}(\Gamma_1(2))9^{\oplus 9}\oplusS4new(Γ1(3))S_{4}^{\mathrm{new}}(\Gamma_1(3))12^{\oplus 12}\oplusS4new(Γ1(5))S_{4}^{\mathrm{new}}(\Gamma_1(5))12^{\oplus 12}\oplusS4new(Γ1(6))S_{4}^{\mathrm{new}}(\Gamma_1(6))6^{\oplus 6}\oplusS4new(Γ1(9))S_{4}^{\mathrm{new}}(\Gamma_1(9))6^{\oplus 6}\oplusS4new(Γ1(10))S_{4}^{\mathrm{new}}(\Gamma_1(10))6^{\oplus 6}\oplusS4new(Γ1(15))S_{4}^{\mathrm{new}}(\Gamma_1(15))8^{\oplus 8}\oplusS4new(Γ1(18))S_{4}^{\mathrm{new}}(\Gamma_1(18))3^{\oplus 3}\oplusS4new(Γ1(25))S_{4}^{\mathrm{new}}(\Gamma_1(25))6^{\oplus 6}\oplusS4new(Γ1(30))S_{4}^{\mathrm{new}}(\Gamma_1(30))4^{\oplus 4}\oplusS4new(Γ1(45))S_{4}^{\mathrm{new}}(\Gamma_1(45))4^{\oplus 4}\oplusS4new(Γ1(50))S_{4}^{\mathrm{new}}(\Gamma_1(50))3^{\oplus 3}\oplusS4new(Γ1(75))S_{4}^{\mathrm{new}}(\Gamma_1(75))4^{\oplus 4}\oplusS4new(Γ1(90))S_{4}^{\mathrm{new}}(\Gamma_1(90))2^{\oplus 2}\oplusS4new(Γ1(150))S_{4}^{\mathrm{new}}(\Gamma_1(150))2^{\oplus 2}\oplusS4new(Γ1(225))S_{4}^{\mathrm{new}}(\Gamma_1(225))2^{\oplus 2}