Defining parameters
Level: | \( N \) | \(=\) | \( 456 = 2^{3} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 456.bg (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(160\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(456, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 528 | 60 | 468 |
Cusp forms | 432 | 60 | 372 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(456, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
456.2.bg.a | $12$ | $3.641$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(-3\) | \(0\) | \(q+(\beta _{2}-\beta _{11})q^{3}-\beta _{1}q^{5}+(-\beta _{2}-\beta _{3}+\cdots)q^{7}+\cdots\) |
456.2.bg.b | $12$ | $3.641$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(3\) | \(-6\) | \(q-\beta _{4}q^{3}+(1+\beta _{6}+\beta _{9}+\beta _{11})q^{5}+\cdots\) |
456.2.bg.c | $18$ | $3.641$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(0\) | \(-3\) | \(0\) | \(q-\beta _{7}q^{3}+(\beta _{2}-\beta _{4})q^{5}+(-\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\) |
456.2.bg.d | $18$ | $3.641$ | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) | None | \(0\) | \(0\) | \(3\) | \(6\) | \(q+\beta _{9}q^{3}+(1+\beta _{5}-\beta _{6}+\beta _{12}+\beta _{16}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(456, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(456, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 2}\)