Properties

Label 459.2.e
Level $459$
Weight $2$
Character orbit 459.e
Rep. character $\chi_{459}(154,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $32$
Newform subspaces $3$
Sturm bound $108$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(108\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(459, [\chi])\).

Total New Old
Modular forms 120 32 88
Cusp forms 96 32 64
Eisenstein series 24 0 24

Trace form

\( 32 q - 16 q^{4} + 2 q^{5} - 2 q^{7} + 12 q^{8} + 8 q^{11} - 2 q^{13} + 4 q^{14} - 16 q^{16} - 8 q^{17} + 4 q^{19} - 10 q^{20} + 8 q^{23} - 10 q^{25} + 16 q^{26} + 16 q^{28} - 6 q^{29} - 2 q^{31} - 22 q^{32}+ \cdots - 92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(459, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
459.2.e.a 459.e 9.c $4$ $3.665$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 153.2.e.a \(1\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{2}-\beta _{3})q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\)
459.2.e.b 459.e 9.c $8$ $3.665$ 8.0.152695449.1 None 153.2.e.b \(-1\) \(0\) \(1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{2}-\beta _{3})q^{2}+(-1-\beta _{1}-\beta _{4}+\cdots)q^{4}+\cdots\)
459.2.e.c 459.e 9.c $20$ $3.665$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 153.2.e.c \(0\) \(0\) \(1\) \(-11\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{16}q^{2}+(-\beta _{1}-\beta _{7})q^{4}-\beta _{14}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(459, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(459, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)