Defining parameters
Level: | \( N \) | \(=\) | \( 459 = 3^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 459.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(459, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 32 | 88 |
Cusp forms | 96 | 32 | 64 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(459, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
459.2.e.a | $4$ | $3.665$ | \(\Q(\sqrt{-3}, \sqrt{5})\) | None | \(1\) | \(0\) | \(0\) | \(6\) | \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{2}-\beta _{3})q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\) |
459.2.e.b | $8$ | $3.665$ | 8.0.152695449.1 | None | \(-1\) | \(0\) | \(1\) | \(3\) | \(q+(-\beta _{2}-\beta _{3})q^{2}+(-1-\beta _{1}-\beta _{4}+\cdots)q^{4}+\cdots\) |
459.2.e.c | $20$ | $3.665$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(1\) | \(-11\) | \(q-\beta _{16}q^{2}+(-\beta _{1}-\beta _{7})q^{4}-\beta _{14}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(459, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(459, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)