Properties

Label 459.2.e
Level 459459
Weight 22
Character orbit 459.e
Rep. character χ459(154,)\chi_{459}(154,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 3232
Newform subspaces 33
Sturm bound 108108
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 459=3317 459 = 3^{3} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 459.e (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 9 9
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 3 3
Sturm bound: 108108
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(459,[χ])M_{2}(459, [\chi]).

Total New Old
Modular forms 120 32 88
Cusp forms 96 32 64
Eisenstein series 24 0 24

Trace form

32q16q4+2q52q7+12q8+8q112q13+4q1416q168q17+4q1910q20+8q2310q25+16q26+16q286q292q3122q32+92q98+O(q100) 32 q - 16 q^{4} + 2 q^{5} - 2 q^{7} + 12 q^{8} + 8 q^{11} - 2 q^{13} + 4 q^{14} - 16 q^{16} - 8 q^{17} + 4 q^{19} - 10 q^{20} + 8 q^{23} - 10 q^{25} + 16 q^{26} + 16 q^{28} - 6 q^{29} - 2 q^{31} - 22 q^{32}+ \cdots - 92 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(459,[χ])S_{2}^{\mathrm{new}}(459, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
459.2.e.a 459.e 9.c 44 3.6653.665 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) None 153.2.e.a 11 00 00 66 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β1q2+(β1+β2β3)q4+(2β1+)q5+q+\beta _{1}q^{2}+(\beta _{1}+\beta _{2}-\beta _{3})q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots
459.2.e.b 459.e 9.c 88 3.6653.665 8.0.152695449.1 None 153.2.e.b 1-1 00 11 33 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β2β3)q2+(1β1β4+)q4+q+(-\beta _{2}-\beta _{3})q^{2}+(-1-\beta _{1}-\beta _{4}+\cdots)q^{4}+\cdots
459.2.e.c 459.e 9.c 2020 3.6653.665 Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots) None 153.2.e.c 00 00 11 11-11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ16q2+(β1β7)q4β14q5+q-\beta _{16}q^{2}+(-\beta _{1}-\beta _{7})q^{4}-\beta _{14}q^{5}+\cdots

Decomposition of S2old(459,[χ])S_{2}^{\mathrm{old}}(459, [\chi]) into lower level spaces

S2old(459,[χ]) S_{2}^{\mathrm{old}}(459, [\chi]) \simeq S2new(153,[χ])S_{2}^{\mathrm{new}}(153, [\chi])2^{\oplus 2}