Properties

Label 46.8.a
Level $46$
Weight $8$
Character orbit 46.a
Rep. character $\chi_{46}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $4$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 46 = 2 \cdot 23 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 46.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(46))\).

Total New Old
Modular forms 44 12 32
Cusp forms 40 12 28
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(4\)
Plus space\(+\)\(7\)
Minus space\(-\)\(5\)

Trace form

\( 12 q + 16 q^{2} + 28 q^{3} + 768 q^{4} - 110 q^{5} + 1120 q^{6} - 1244 q^{7} + 1024 q^{8} + 8468 q^{9} - 5360 q^{10} - 12178 q^{11} + 1792 q^{12} - 3168 q^{13} - 3616 q^{14} + 53464 q^{15} + 49152 q^{16}+ \cdots - 4181946 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(46))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 23
46.8.a.a 46.a 1.a $2$ $14.370$ \(\Q(\sqrt{85}) \) None 46.8.a.a \(-16\) \(-28\) \(-110\) \(74\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+(-14-7\beta )q^{3}+2^{6}q^{4}+(-55+\cdots)q^{5}+\cdots\)
46.8.a.b 46.a 1.a $3$ $14.370$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 46.8.a.b \(-24\) \(-28\) \(390\) \(-470\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+(-9-\beta _{2})q^{3}+2^{6}q^{4}+(131+\cdots)q^{5}+\cdots\)
46.8.a.c 46.a 1.a $3$ $14.370$ 3.3.285765.1 None 46.8.a.c \(24\) \(-12\) \(-570\) \(-1382\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+(-5+2\beta _{1}-\beta _{2})q^{3}+2^{6}q^{4}+\cdots\)
46.8.a.d 46.a 1.a $4$ $14.370$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 46.8.a.d \(32\) \(96\) \(180\) \(534\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+(24-\beta _{1})q^{3}+2^{6}q^{4}+(45+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(46))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(46)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)