Defining parameters
Level: | \( N \) | \(=\) | \( 46 = 2 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 46.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(46))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 12 | 32 |
Cusp forms | 40 | 12 | 28 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(23\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(4\) |
Plus space | \(+\) | \(7\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(46))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 23 | |||||||
46.8.a.a | $2$ | $14.370$ | \(\Q(\sqrt{85}) \) | None | \(-16\) | \(-28\) | \(-110\) | \(74\) | $+$ | $-$ | \(q-8q^{2}+(-14-7\beta )q^{3}+2^{6}q^{4}+(-55+\cdots)q^{5}+\cdots\) | |
46.8.a.b | $3$ | $14.370$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-24\) | \(-28\) | \(390\) | \(-470\) | $+$ | $+$ | \(q-8q^{2}+(-9-\beta _{2})q^{3}+2^{6}q^{4}+(131+\cdots)q^{5}+\cdots\) | |
46.8.a.c | $3$ | $14.370$ | 3.3.285765.1 | None | \(24\) | \(-12\) | \(-570\) | \(-1382\) | $-$ | $+$ | \(q+8q^{2}+(-5+2\beta _{1}-\beta _{2})q^{3}+2^{6}q^{4}+\cdots\) | |
46.8.a.d | $4$ | $14.370$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(32\) | \(96\) | \(180\) | \(534\) | $-$ | $-$ | \(q+8q^{2}+(24-\beta _{1})q^{3}+2^{6}q^{4}+(45+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(46))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(46)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)