Properties

Label 46.8.a
Level 4646
Weight 88
Character orbit 46.a
Rep. character χ46(1,)\chi_{46}(1,\cdot)
Character field Q\Q
Dimension 1212
Newform subspaces 44
Sturm bound 4848
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 46=223 46 = 2 \cdot 23
Weight: k k == 8 8
Character orbit: [χ][\chi] == 46.a (trivial)
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 4848
Trace bound: 22
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M8(Γ0(46))M_{8}(\Gamma_0(46)).

Total New Old
Modular forms 44 12 32
Cusp forms 40 12 28
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

222323FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++131333101012123399110011
++--992277882266110011
-++-1212339911113388110011
--++10104466994455110011
Plus space++23237716162121771414220022
Minus space-21215516161919551414220022

Trace form

12q+16q2+28q3+768q4110q5+1120q61244q7+1024q8+8468q95360q1012178q11+1792q123168q133616q14+53464q15+49152q16+4181946q99+O(q100) 12 q + 16 q^{2} + 28 q^{3} + 768 q^{4} - 110 q^{5} + 1120 q^{6} - 1244 q^{7} + 1024 q^{8} + 8468 q^{9} - 5360 q^{10} - 12178 q^{11} + 1792 q^{12} - 3168 q^{13} - 3616 q^{14} + 53464 q^{15} + 49152 q^{16}+ \cdots - 4181946 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(Γ0(46))S_{8}^{\mathrm{new}}(\Gamma_0(46)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 23
46.8.a.a 46.a 1.a 22 14.37014.370 Q(85)\Q(\sqrt{85}) None 46.8.a.a 16-16 28-28 110-110 7474 ++ - SU(2)\mathrm{SU}(2) q8q2+(147β)q3+26q4+(55+)q5+q-8q^{2}+(-14-7\beta )q^{3}+2^{6}q^{4}+(-55+\cdots)q^{5}+\cdots
46.8.a.b 46.a 1.a 33 14.37014.370 Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots) None 46.8.a.b 24-24 28-28 390390 470-470 ++ ++ SU(2)\mathrm{SU}(2) q8q2+(9β2)q3+26q4+(131+)q5+q-8q^{2}+(-9-\beta _{2})q^{3}+2^{6}q^{4}+(131+\cdots)q^{5}+\cdots
46.8.a.c 46.a 1.a 33 14.37014.370 3.3.285765.1 None 46.8.a.c 2424 12-12 570-570 1382-1382 - ++ SU(2)\mathrm{SU}(2) q+8q2+(5+2β1β2)q3+26q4+q+8q^{2}+(-5+2\beta _{1}-\beta _{2})q^{3}+2^{6}q^{4}+\cdots
46.8.a.d 46.a 1.a 44 14.37014.370 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 46.8.a.d 3232 9696 180180 534534 - - SU(2)\mathrm{SU}(2) q+8q2+(24β1)q3+26q4+(45+)q5+q+8q^{2}+(24-\beta _{1})q^{3}+2^{6}q^{4}+(45+\cdots)q^{5}+\cdots

Decomposition of S8old(Γ0(46))S_{8}^{\mathrm{old}}(\Gamma_0(46)) into lower level spaces

S8old(Γ0(46)) S_{8}^{\mathrm{old}}(\Gamma_0(46)) \simeq S8new(Γ0(2))S_{8}^{\mathrm{new}}(\Gamma_0(2))2^{\oplus 2}\oplusS8new(Γ0(23))S_{8}^{\mathrm{new}}(\Gamma_0(23))2^{\oplus 2}