Properties

Label 460.2
Level 460
Weight 2
Dimension 3250
Nonzero newspaces 12
Newform subspaces 22
Sturm bound 25344
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 22 \)
Sturm bound: \(25344\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(460))\).

Total New Old
Modular forms 6776 3498 3278
Cusp forms 5897 3250 2647
Eisenstein series 879 248 631

Trace form

\( 3250 q - 18 q^{2} + 4 q^{3} - 22 q^{4} - 56 q^{5} - 66 q^{6} - 4 q^{7} - 30 q^{8} - 46 q^{9} - 45 q^{10} - 22 q^{12} - 44 q^{13} - 22 q^{14} + 7 q^{15} - 50 q^{16} - 22 q^{17} - 10 q^{18} + 30 q^{19} - 25 q^{20}+ \cdots - 242 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(460))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
460.2.a \(\chi_{460}(1, \cdot)\) 460.2.a.a 1 1
460.2.a.b 1
460.2.a.c 1
460.2.a.d 1
460.2.a.e 2
460.2.c \(\chi_{460}(369, \cdot)\) 460.2.c.a 12 1
460.2.e \(\chi_{460}(91, \cdot)\) 460.2.e.a 16 1
460.2.e.b 32
460.2.g \(\chi_{460}(459, \cdot)\) 460.2.g.a 4 1
460.2.g.b 8
460.2.g.c 56
460.2.i \(\chi_{460}(137, \cdot)\) 460.2.i.a 8 2
460.2.i.b 16
460.2.j \(\chi_{460}(47, \cdot)\) 460.2.j.a 132 2
460.2.m \(\chi_{460}(41, \cdot)\) 460.2.m.a 30 10
460.2.m.b 50
460.2.o \(\chi_{460}(19, \cdot)\) 460.2.o.a 40 10
460.2.o.b 640
460.2.q \(\chi_{460}(11, \cdot)\) 460.2.q.a 480 10
460.2.s \(\chi_{460}(9, \cdot)\) 460.2.s.a 120 10
460.2.w \(\chi_{460}(3, \cdot)\) 460.2.w.a 1360 20
460.2.x \(\chi_{460}(17, \cdot)\) 460.2.x.a 240 20

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(460))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(460)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(230))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(460))\)\(^{\oplus 1}\)