Defining parameters
Level: | \( N \) | \(=\) | \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 462.k (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(15\) | ||
Distinguishing \(T_p\): | \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(462, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 208 | 56 | 152 |
Cusp forms | 176 | 56 | 120 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(462, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(462, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(462, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)