Properties

Label 462.2.k
Level $462$
Weight $2$
Character orbit 462.k
Rep. character $\chi_{462}(89,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $56$
Newform subspaces $7$
Sturm bound $192$
Trace bound $15$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 7 \)
Sturm bound: \(192\)
Trace bound: \(15\)
Distinguishing \(T_p\): \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(462, [\chi])\).

Total New Old
Modular forms 208 56 152
Cusp forms 176 56 120
Eisenstein series 32 0 32

Trace form

\( 56 q + 28 q^{4} + 16 q^{7} + 4 q^{9} - 8 q^{15} - 28 q^{16} + 8 q^{18} - 24 q^{19} + 16 q^{21} - 12 q^{24} - 36 q^{25} + 8 q^{28} + 24 q^{31} + 8 q^{36} - 12 q^{37} - 20 q^{39} + 36 q^{42} + 48 q^{45} + 16 q^{46}+ \cdots - 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(462, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
462.2.k.a 462.k 21.g $4$ $3.689$ \(\Q(\zeta_{12})\) None 462.2.k.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
462.2.k.b 462.k 21.g $4$ $3.689$ \(\Q(\zeta_{12})\) None 462.2.k.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(\zeta_{12}+\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
462.2.k.c 462.k 21.g $4$ $3.689$ \(\Q(\zeta_{12})\) None 462.2.k.c \(0\) \(6\) \(0\) \(2\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(2-\zeta_{12}^{2})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
462.2.k.d 462.k 21.g $8$ $3.689$ \(\Q(\zeta_{24})\) None 462.2.k.d \(0\) \(-12\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta_{3}-\beta_1)q^{2}+(-\beta_{2}-1)q^{3}+\cdots\)
462.2.k.e 462.k 21.g $8$ $3.689$ \(\Q(\zeta_{24})\) None 462.2.k.e \(0\) \(4\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{24}^{2}+\zeta_{24}^{6})q^{2}+(-\zeta_{24}-\zeta_{24}^{2}+\cdots)q^{3}+\cdots\)
462.2.k.f 462.k 21.g $8$ $3.689$ \(\Q(\zeta_{24})\) None 462.2.k.e \(0\) \(8\) \(4\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{24}^{2}-\zeta_{24}^{6})q^{2}+(1-\zeta_{24}^{3}-\zeta_{24}^{6}+\cdots)q^{3}+\cdots\)
462.2.k.g 462.k 21.g $20$ $3.689$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 462.2.k.g \(0\) \(-6\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{7}q^{2}-\beta _{12}q^{3}-\beta _{3}q^{4}+(2\beta _{6}+\beta _{7}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(462, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(462, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)