Defining parameters
Level: | \( N \) | \(=\) | \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 462.p (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(462, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 208 | 32 | 176 |
Cusp forms | 176 | 32 | 144 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(462, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
462.2.p.a | $16$ | $3.689$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(12\) | \(-6\) | \(q-\beta _{11}q^{2}-\beta _{12}q^{3}-\beta _{13}q^{4}+(1+\beta _{8}+\cdots)q^{5}+\cdots\) |
462.2.p.b | $16$ | $3.689$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(12\) | \(6\) | \(q-\beta _{12}q^{2}+\beta _{11}q^{3}+(1+\beta _{13})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(462, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(462, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)