Properties

Label 462.2.p
Level 462462
Weight 22
Character orbit 462.p
Rep. character χ462(241,)\chi_{462}(241,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 3232
Newform subspaces 22
Sturm bound 192192
Trace bound 66

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 462=23711 462 = 2 \cdot 3 \cdot 7 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 462.p (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 77 77
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 2 2
Sturm bound: 192192
Trace bound: 66
Distinguishing TpT_p: 1313

Dimensions

The following table gives the dimensions of various subspaces of M2(462,[χ])M_{2}(462, [\chi]).

Total New Old
Modular forms 208 32 176
Cusp forms 176 32 144
Eisenstein series 32 0 32

Trace form

32q+16q4+24q5+16q98q11+16q148q1516q16+4q228q23+20q25+24q26+12q31+6q33+32q36+28q3724q38+12q42+8q44+16q99+O(q100) 32 q + 16 q^{4} + 24 q^{5} + 16 q^{9} - 8 q^{11} + 16 q^{14} - 8 q^{15} - 16 q^{16} + 4 q^{22} - 8 q^{23} + 20 q^{25} + 24 q^{26} + 12 q^{31} + 6 q^{33} + 32 q^{36} + 28 q^{37} - 24 q^{38} + 12 q^{42} + 8 q^{44}+ \cdots - 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(462,[χ])S_{2}^{\mathrm{new}}(462, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
462.2.p.a 462.p 77.i 1616 3.6893.689 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 462.2.p.a 00 00 1212 6-6 SU(2)[C6]\mathrm{SU}(2)[C_{6}] qβ11q2β12q3β13q4+(1+β8+)q5+q-\beta _{11}q^{2}-\beta _{12}q^{3}-\beta _{13}q^{4}+(1+\beta _{8}+\cdots)q^{5}+\cdots
462.2.p.b 462.p 77.i 1616 3.6893.689 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 462.2.p.a 00 00 1212 66 SU(2)[C6]\mathrm{SU}(2)[C_{6}] qβ12q2+β11q3+(1+β13)q4+q-\beta _{12}q^{2}+\beta _{11}q^{3}+(1+\beta _{13})q^{4}+\cdots

Decomposition of S2old(462,[χ])S_{2}^{\mathrm{old}}(462, [\chi]) into lower level spaces

S2old(462,[χ]) S_{2}^{\mathrm{old}}(462, [\chi]) \simeq S2new(77,[χ])S_{2}^{\mathrm{new}}(77, [\chi])4^{\oplus 4}\oplusS2new(154,[χ])S_{2}^{\mathrm{new}}(154, [\chi])2^{\oplus 2}\oplusS2new(231,[χ])S_{2}^{\mathrm{new}}(231, [\chi])2^{\oplus 2}