Properties

Label 464.2.u
Level 464464
Weight 22
Character orbit 464.u
Rep. character χ464(49,)\chi_{464}(49,\cdot)
Character field Q(ζ7)\Q(\zeta_{7})
Dimension 8484
Newform subspaces 99
Sturm bound 120120
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 464=2429 464 = 2^{4} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 464.u (of order 77 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 29 29
Character field: Q(ζ7)\Q(\zeta_{7})
Newform subspaces: 9 9
Sturm bound: 120120
Trace bound: 55
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(464,[χ])M_{2}(464, [\chi]).

Total New Old
Modular forms 396 96 300
Cusp forms 324 84 240
Eisenstein series 72 12 60

Trace form

84q+5q37q5+3q717q9+15q117q13q1510q17+5q197q215q23+7q2513q277q29+5q317q33+7q357q37+140q99+O(q100) 84 q + 5 q^{3} - 7 q^{5} + 3 q^{7} - 17 q^{9} + 15 q^{11} - 7 q^{13} - q^{15} - 10 q^{17} + 5 q^{19} - 7 q^{21} - 5 q^{23} + 7 q^{25} - 13 q^{27} - 7 q^{29} + 5 q^{31} - 7 q^{33} + 7 q^{35} - 7 q^{37}+ \cdots - 140 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(464,[χ])S_{2}^{\mathrm{new}}(464, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
464.2.u.a 464.u 29.d 66 3.7053.705 Q(ζ14)\Q(\zeta_{14}) None 232.2.m.c 00 5-5 77 33 SU(2)[C7]\mathrm{SU}(2)[C_{7}] q+(1+ζ145)q3+(1ζ142ζ144+)q5+q+(-1+\zeta_{14}^{5})q^{3}+(1-\zeta_{14}-2\zeta_{14}^{4}+\cdots)q^{5}+\cdots
464.2.u.b 464.u 29.d 66 3.7053.705 Q(ζ14)\Q(\zeta_{14}) None 58.2.d.a 00 3-3 4-4 55 SU(2)[C7]\mathrm{SU}(2)[C_{7}] q+(1+ζ14ζ144+ζ145)q3+q+(-1+\zeta_{14}-\zeta_{14}^{4}+\zeta_{14}^{5})q^{3}+\cdots
464.2.u.c 464.u 29.d 66 3.7053.705 Q(ζ14)\Q(\zeta_{14}) None 116.2.g.a 00 3-3 3-3 3-3 SU(2)[C7]\mathrm{SU}(2)[C_{7}] q+(12ζ14+2ζ1422ζ143+2ζ144+)q3+q+(1-2\zeta_{14}+2\zeta_{14}^{2}-2\zeta_{14}^{3}+2\zeta_{14}^{4}+\cdots)q^{3}+\cdots
464.2.u.d 464.u 29.d 66 3.7053.705 Q(ζ14)\Q(\zeta_{14}) None 232.2.m.b 00 11 1-1 5-5 SU(2)[C7]\mathrm{SU}(2)[C_{7}] q+(1+2ζ1422ζ143ζ145)q3+q+(1+2\zeta_{14}^{2}-2\zeta_{14}^{3}-\zeta_{14}^{5})q^{3}+\cdots
464.2.u.e 464.u 29.d 66 3.7053.705 Q(ζ14)\Q(\zeta_{14}) None 232.2.m.a 00 33 22 33 SU(2)[C7]\mathrm{SU}(2)[C_{7}] q+(1ζ14+ζ144ζ145)q3+(ζ143+)q5+q+(1-\zeta_{14}+\zeta_{14}^{4}-\zeta_{14}^{5})q^{3}+(\zeta_{14}^{3}+\cdots)q^{5}+\cdots
464.2.u.f 464.u 29.d 66 3.7053.705 Q(ζ14)\Q(\zeta_{14}) None 29.2.d.a 00 55 11 1-1 SU(2)[C7]\mathrm{SU}(2)[C_{7}] q+(1ζ145)q3+(1ζ142ζ143+)q5+q+(1-\zeta_{14}^{5})q^{3}+(1-\zeta_{14}-2\zeta_{14}^{3}+\cdots)q^{5}+\cdots
464.2.u.g 464.u 29.d 1212 3.7053.705 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 116.2.g.b 00 33 1-1 77 SU(2)[C7]\mathrm{SU}(2)[C_{7}] q+(β1+β8)q3+(β2+β3+β4+β5+)q5+q+(\beta _{1}+\beta _{8})q^{3}+(-\beta _{2}+\beta _{3}+\beta _{4}+\beta _{5}+\cdots)q^{5}+\cdots
464.2.u.h 464.u 29.d 1212 3.7053.705 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 58.2.d.b 00 33 00 1-1 SU(2)[C7]\mathrm{SU}(2)[C_{7}] qβ11q3+(β1+β3β4+β5β7+)q5+q-\beta _{11}q^{3}+(\beta _{1}+\beta _{3}-\beta _{4}+\beta _{5}-\beta _{7}+\cdots)q^{5}+\cdots
464.2.u.i 464.u 29.d 2424 3.7053.705 None 232.2.m.d 00 11 8-8 5-5 SU(2)[C7]\mathrm{SU}(2)[C_{7}]

Decomposition of S2old(464,[χ])S_{2}^{\mathrm{old}}(464, [\chi]) into lower level spaces

S2old(464,[χ]) S_{2}^{\mathrm{old}}(464, [\chi]) \simeq S2new(29,[χ])S_{2}^{\mathrm{new}}(29, [\chi])5^{\oplus 5}\oplusS2new(58,[χ])S_{2}^{\mathrm{new}}(58, [\chi])4^{\oplus 4}\oplusS2new(116,[χ])S_{2}^{\mathrm{new}}(116, [\chi])3^{\oplus 3}\oplusS2new(232,[χ])S_{2}^{\mathrm{new}}(232, [\chi])2^{\oplus 2}