Defining parameters
Level: | \( N \) | \(=\) | \( 464 = 2^{4} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 464.u (of order \(7\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q(\zeta_{7})\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(464, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 396 | 96 | 300 |
Cusp forms | 324 | 84 | 240 |
Eisenstein series | 72 | 12 | 60 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(464, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(464, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(464, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(58, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(116, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(232, [\chi])\)\(^{\oplus 2}\)