Defining parameters
Level: | \( N \) | \(=\) | \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4650.eo (of order \(30\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 155 \) |
Character field: | \(\Q(\zeta_{30})\) | ||
Sturm bound: | \(1920\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4650, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7872 | 768 | 7104 |
Cusp forms | 7488 | 768 | 6720 |
Eisenstein series | 384 | 0 | 384 |
Decomposition of \(S_{2}^{\mathrm{new}}(4650, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4650, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(310, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(465, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(775, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(930, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1550, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2325, [\chi])\)\(^{\oplus 2}\)