Properties

Label 4655.2.j
Level 46554655
Weight 22
Character orbit 4655.j
Rep. character χ4655(2186,)\chi_{4655}(2186,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 480480
Sturm bound 11201120

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4655=57219 4655 = 5 \cdot 7^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4655.j (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ3)\Q(\zeta_{3})
Sturm bound: 11201120

Dimensions

The following table gives the dimensions of various subspaces of M2(4655,[χ])M_{2}(4655, [\chi]).

Total New Old
Modular forms 1152 480 672
Cusp forms 1088 480 608
Eisenstein series 64 0 64

Decomposition of S2new(4655,[χ])S_{2}^{\mathrm{new}}(4655, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(4655,[χ])S_{2}^{\mathrm{old}}(4655, [\chi]) into lower level spaces

S2old(4655,[χ]) S_{2}^{\mathrm{old}}(4655, [\chi]) \simeq S2new(35,[χ])S_{2}^{\mathrm{new}}(35, [\chi])4^{\oplus 4}\oplusS2new(49,[χ])S_{2}^{\mathrm{new}}(49, [\chi])4^{\oplus 4}\oplusS2new(133,[χ])S_{2}^{\mathrm{new}}(133, [\chi])4^{\oplus 4}\oplusS2new(245,[χ])S_{2}^{\mathrm{new}}(245, [\chi])2^{\oplus 2}\oplusS2new(665,[χ])S_{2}^{\mathrm{new}}(665, [\chi])2^{\oplus 2}\oplusS2new(931,[χ])S_{2}^{\mathrm{new}}(931, [\chi])2^{\oplus 2}