Defining parameters
Level: | \( N \) | \(=\) | \( 4655 = 5 \cdot 7^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4655.j (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Sturm bound: | \(1120\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4655, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1152 | 480 | 672 |
Cusp forms | 1088 | 480 | 608 |
Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{2}^{\mathrm{new}}(4655, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4655, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4655, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(665, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(931, [\chi])\)\(^{\oplus 2}\)