Defining parameters
Level: | \( N \) | \(=\) | \( 4675 = 5^{2} \cdot 11 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4675.v (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Sturm bound: | \(1080\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4675, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2208 | 1216 | 992 |
Cusp forms | 2112 | 1216 | 896 |
Eisenstein series | 96 | 0 | 96 |
Decomposition of \(S_{2}^{\mathrm{new}}(4675, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4675, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4675, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(187, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(935, [\chi])\)\(^{\oplus 2}\)