Defining parameters
Level: | \( N \) | \(=\) | \( 4675 = 5^{2} \cdot 11 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4675.w (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Sturm bound: | \(1080\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4675, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2176 | 1600 | 576 |
Cusp forms | 2144 | 1600 | 544 |
Eisenstein series | 32 | 0 | 32 |
Decomposition of \(S_{2}^{\mathrm{new}}(4675, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4675, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4675, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 2}\)