Properties

Label 468.2.n
Level 468468
Weight 22
Character orbit 468.n
Rep. character χ468(307,)\chi_{468}(307,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 6666
Newform subspaces 1212
Sturm bound 168168
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 468=223213 468 = 2^{2} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 468.n (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 52 52
Character field: Q(i)\Q(i)
Newform subspaces: 12 12
Sturm bound: 168168
Trace bound: 77
Distinguishing TpT_p: 55, 77, 1111, 1717

Dimensions

The following table gives the dimensions of various subspaces of M2(468,[χ])M_{2}(468, [\chi]).

Total New Old
Modular forms 184 74 110
Cusp forms 152 66 86
Eisenstein series 32 8 24

Trace form

66q+2q2+2q5+8q84q1312q14+4q168q20+8q22+22q2612q28+8q298q32+32q34+2q3736q40+6q41+24q4412q46++42q98+O(q100) 66 q + 2 q^{2} + 2 q^{5} + 8 q^{8} - 4 q^{13} - 12 q^{14} + 4 q^{16} - 8 q^{20} + 8 q^{22} + 22 q^{26} - 12 q^{28} + 8 q^{29} - 8 q^{32} + 32 q^{34} + 2 q^{37} - 36 q^{40} + 6 q^{41} + 24 q^{44} - 12 q^{46}+ \cdots + 42 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(468,[χ])S_{2}^{\mathrm{new}}(468, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
468.2.n.a 468.n 52.f 22 3.7373.737 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 468.2.n.a 2-2 00 6-6 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(i1)q2+2iq4+(3i3)q5+q+(-i-1)q^{2}+2 i q^{4}+(-3 i-3)q^{5}+\cdots
468.2.n.b 468.n 52.f 22 3.7373.737 Q(1)\Q(\sqrt{-1}) None 156.2.k.c 2-2 00 4-4 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i1)q22iq4+(2i2)q5+q+(i-1)q^{2}-2 i q^{4}+(-2 i-2)q^{5}+\cdots
468.2.n.c 468.n 52.f 22 3.7373.737 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 52.2.f.a 2-2 00 66 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(i1)q2+2iq4+(3i+3)q5+q+(-i-1)q^{2}+2 i q^{4}+(3 i+3)q^{5}+\cdots
468.2.n.d 468.n 52.f 22 3.7373.737 Q(1)\Q(\sqrt{-1}) None 156.2.k.c 22 00 4-4 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i+1)q22iq4+(2i2)q5+q+(-i+1)q^{2}-2 i q^{4}+(-2 i-2)q^{5}+\cdots
468.2.n.e 468.n 52.f 22 3.7373.737 Q(1)\Q(\sqrt{-1}) None 156.2.k.a 22 00 22 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i+1)q2+2iq4+(i+1)q5+q+(i+1)q^{2}+2 i q^{4}+(i+1)q^{5}+\cdots
468.2.n.f 468.n 52.f 22 3.7373.737 Q(1)\Q(\sqrt{-1}) None 156.2.k.a 22 00 22 44 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i+1)q2+2iq4+(i+1)q5+q+(i+1)q^{2}+2 i q^{4}+(i+1)q^{5}+\cdots
468.2.n.g 468.n 52.f 22 3.7373.737 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 468.2.n.a 22 00 66 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(i+1)q2+2iq4+(3i+3)q5+q+(i+1)q^{2}+2 i q^{4}+(3 i+3)q^{5}+\cdots
468.2.n.h 468.n 52.f 88 3.7373.737 8.0.157351936.1 None 468.2.n.h 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ1q2+(β4+β6)q4+(β1β3)q5+q-\beta _{1}q^{2}+(\beta _{4}+\beta _{6})q^{4}+(\beta _{1}-\beta _{3})q^{5}+\cdots
468.2.n.i 468.n 52.f 88 3.7373.737 8.0.18939904.2 None 52.2.f.b 44 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(1β2+β5β7)q2+(β2β3+)q4+q+(1-\beta _{2}+\beta _{5}-\beta _{7})q^{2}+(-\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots
468.2.n.j 468.n 52.f 1010 3.7373.737 10.0.\cdots.1 None 156.2.k.e 4-4 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ3q2+(β5β7)q4+(β1+β2+)q5+q-\beta _{3}q^{2}+(-\beta _{5}-\beta _{7})q^{4}+(-\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots
468.2.n.k 468.n 52.f 1010 3.7373.737 10.0.\cdots.1 None 156.2.k.e 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ1q2+(β7+β8)q4+(β2β3+)q5+q-\beta _{1}q^{2}+(\beta _{7}+\beta _{8})q^{4}+(-\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots
468.2.n.l 468.n 52.f 1616 3.7373.737 16.0.\cdots.7 None 468.2.n.l 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ11q2+β7q4β2q5+(β7β9+)q7+q-\beta _{11}q^{2}+\beta _{7}q^{4}-\beta _{2}q^{5}+(\beta _{7}-\beta _{9}+\cdots)q^{7}+\cdots

Decomposition of S2old(468,[χ])S_{2}^{\mathrm{old}}(468, [\chi]) into lower level spaces

S2old(468,[χ]) S_{2}^{\mathrm{old}}(468, [\chi]) \simeq S2new(52,[χ])S_{2}^{\mathrm{new}}(52, [\chi])3^{\oplus 3}\oplusS2new(156,[χ])S_{2}^{\mathrm{new}}(156, [\chi])2^{\oplus 2}