Properties

Label 468.2.n
Level $468$
Weight $2$
Character orbit 468.n
Rep. character $\chi_{468}(307,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $66$
Newform subspaces $12$
Sturm bound $168$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.n (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 12 \)
Sturm bound: \(168\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(468, [\chi])\).

Total New Old
Modular forms 184 74 110
Cusp forms 152 66 86
Eisenstein series 32 8 24

Trace form

\( 66 q + 2 q^{2} + 2 q^{5} + 8 q^{8} - 4 q^{13} - 12 q^{14} + 4 q^{16} - 8 q^{20} + 8 q^{22} + 22 q^{26} - 12 q^{28} + 8 q^{29} - 8 q^{32} + 32 q^{34} + 2 q^{37} - 36 q^{40} + 6 q^{41} + 24 q^{44} - 12 q^{46}+ \cdots + 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(468, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
468.2.n.a 468.n 52.f $2$ $3.737$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 468.2.n.a \(-2\) \(0\) \(-6\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(-i-1)q^{2}+2 i q^{4}+(-3 i-3)q^{5}+\cdots\)
468.2.n.b 468.n 52.f $2$ $3.737$ \(\Q(\sqrt{-1}) \) None 156.2.k.c \(-2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{2}-2 i q^{4}+(-2 i-2)q^{5}+\cdots\)
468.2.n.c 468.n 52.f $2$ $3.737$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 52.2.f.a \(-2\) \(0\) \(6\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(-i-1)q^{2}+2 i q^{4}+(3 i+3)q^{5}+\cdots\)
468.2.n.d 468.n 52.f $2$ $3.737$ \(\Q(\sqrt{-1}) \) None 156.2.k.c \(2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{2}-2 i q^{4}+(-2 i-2)q^{5}+\cdots\)
468.2.n.e 468.n 52.f $2$ $3.737$ \(\Q(\sqrt{-1}) \) None 156.2.k.a \(2\) \(0\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i+1)q^{2}+2 i q^{4}+(i+1)q^{5}+\cdots\)
468.2.n.f 468.n 52.f $2$ $3.737$ \(\Q(\sqrt{-1}) \) None 156.2.k.a \(2\) \(0\) \(2\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i+1)q^{2}+2 i q^{4}+(i+1)q^{5}+\cdots\)
468.2.n.g 468.n 52.f $2$ $3.737$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 468.2.n.a \(2\) \(0\) \(6\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(i+1)q^{2}+2 i q^{4}+(3 i+3)q^{5}+\cdots\)
468.2.n.h 468.n 52.f $8$ $3.737$ 8.0.157351936.1 None 468.2.n.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{1}q^{2}+(\beta _{4}+\beta _{6})q^{4}+(\beta _{1}-\beta _{3})q^{5}+\cdots\)
468.2.n.i 468.n 52.f $8$ $3.737$ 8.0.18939904.2 None 52.2.f.b \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{2}+\beta _{5}-\beta _{7})q^{2}+(-\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
468.2.n.j 468.n 52.f $10$ $3.737$ 10.0.\(\cdots\).1 None 156.2.k.e \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{2}+(-\beta _{5}-\beta _{7})q^{4}+(-\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
468.2.n.k 468.n 52.f $10$ $3.737$ 10.0.\(\cdots\).1 None 156.2.k.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{1}q^{2}+(\beta _{7}+\beta _{8})q^{4}+(-\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots\)
468.2.n.l 468.n 52.f $16$ $3.737$ 16.0.\(\cdots\).7 None 468.2.n.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{11}q^{2}+\beta _{7}q^{4}-\beta _{2}q^{5}+(\beta _{7}-\beta _{9}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(468, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(468, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)