Defining parameters
Level: | \( N \) | \(=\) | \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 468.n (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(468, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 74 | 110 |
Cusp forms | 152 | 66 | 86 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(468, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(468, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(468, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)