Defining parameters
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(50\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(475, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9 | 6 | 3 |
Cusp forms | 3 | 3 | 0 |
Eisenstein series | 6 | 3 | 3 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 3 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(475, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
475.1.c.a | $1$ | $0.237$ | \(\Q\) | $D_{2}$ | \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-95}) \) | \(\Q(\sqrt{5}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+q^{4}+q^{9}-2q^{11}+q^{16}-q^{19}+\cdots\) |
475.1.c.b | $2$ | $0.237$ | \(\Q(\sqrt{-2}) \) | $D_{4}$ | \(\Q(\sqrt{-95}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta q^{2}-\beta q^{3}-q^{4}-2q^{6}-q^{9}+\beta q^{12}+\cdots\) |