Properties

Label 47850.2.a.bz
Level 4785047850
Weight 22
Character orbit 47850.a
Self dual yes
Analytic conductor 382.084382.084
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [47850,2,Mod(1,47850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(47850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("47850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 47850=23521129 47850 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 47850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 382.084173672382.084173672
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q2q3+q4q6+q8+q9+q11q12+2q13+q166q17+q184q19+q22+8q23q24+2q26q27+q29+q32++q99+O(q100) q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} + q^{11} - q^{12} + 2 q^{13} + q^{16} - 6 q^{17} + q^{18} - 4 q^{19} + q^{22} + 8 q^{23} - q^{24} + 2 q^{26} - q^{27} + q^{29} + q^{32}+ \cdots + q^{99}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
55 +1 +1
1111 1 -1
2929 1 -1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.