Properties

Label 4788.2.a.r.1.1
Level $4788$
Weight $2$
Character 4788.1
Self dual yes
Analytic conductor $38.232$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(1,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2323724878\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.28825\) of defining polynomial
Character \(\chi\) \(=\) 4788.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.70246 q^{5} +1.00000 q^{7} +4.57649 q^{11} -5.23607 q^{13} +0.874032 q^{17} -1.00000 q^{19} +1.08036 q^{23} +8.70820 q^{25} +4.78282 q^{29} -7.23607 q^{31} -3.70246 q^{35} -6.00000 q^{37} +4.57649 q^{41} +12.1803 q^{43} -10.0270 q^{47} +1.00000 q^{49} +9.35931 q^{53} -16.9443 q^{55} +12.6491 q^{59} -10.9443 q^{61} +19.3863 q^{65} +6.47214 q^{67} -0.206331 q^{71} -12.4721 q^{73} +4.57649 q^{77} -12.9443 q^{79} -16.7642 q^{83} -3.23607 q^{85} +4.57649 q^{89} -5.23607 q^{91} +3.70246 q^{95} +9.41641 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} - 12 q^{13} - 4 q^{19} + 8 q^{25} - 20 q^{31} - 24 q^{37} + 4 q^{43} + 4 q^{49} - 32 q^{55} - 8 q^{61} + 8 q^{67} - 32 q^{73} - 16 q^{79} - 4 q^{85} - 12 q^{91} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.70246 −1.65579 −0.827895 0.560883i \(-0.810462\pi\)
−0.827895 + 0.560883i \(0.810462\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.57649 1.37986 0.689932 0.723874i \(-0.257640\pi\)
0.689932 + 0.723874i \(0.257640\pi\)
\(12\) 0 0
\(13\) −5.23607 −1.45222 −0.726112 0.687576i \(-0.758675\pi\)
−0.726112 + 0.687576i \(0.758675\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.874032 0.211984 0.105992 0.994367i \(-0.466198\pi\)
0.105992 + 0.994367i \(0.466198\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.08036 0.225271 0.112636 0.993636i \(-0.464071\pi\)
0.112636 + 0.993636i \(0.464071\pi\)
\(24\) 0 0
\(25\) 8.70820 1.74164
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.78282 0.888148 0.444074 0.895990i \(-0.353533\pi\)
0.444074 + 0.895990i \(0.353533\pi\)
\(30\) 0 0
\(31\) −7.23607 −1.29964 −0.649818 0.760090i \(-0.725155\pi\)
−0.649818 + 0.760090i \(0.725155\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.70246 −0.625830
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.57649 0.714728 0.357364 0.933965i \(-0.383676\pi\)
0.357364 + 0.933965i \(0.383676\pi\)
\(42\) 0 0
\(43\) 12.1803 1.85748 0.928742 0.370726i \(-0.120891\pi\)
0.928742 + 0.370726i \(0.120891\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.0270 −1.46259 −0.731295 0.682061i \(-0.761084\pi\)
−0.731295 + 0.682061i \(0.761084\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.35931 1.28560 0.642800 0.766034i \(-0.277773\pi\)
0.642800 + 0.766034i \(0.277773\pi\)
\(54\) 0 0
\(55\) −16.9443 −2.28477
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.6491 1.64677 0.823387 0.567480i \(-0.192082\pi\)
0.823387 + 0.567480i \(0.192082\pi\)
\(60\) 0 0
\(61\) −10.9443 −1.40127 −0.700635 0.713520i \(-0.747100\pi\)
−0.700635 + 0.713520i \(0.747100\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 19.3863 2.40458
\(66\) 0 0
\(67\) 6.47214 0.790697 0.395349 0.918531i \(-0.370624\pi\)
0.395349 + 0.918531i \(0.370624\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.206331 −0.0244870 −0.0122435 0.999925i \(-0.503897\pi\)
−0.0122435 + 0.999925i \(0.503897\pi\)
\(72\) 0 0
\(73\) −12.4721 −1.45975 −0.729877 0.683579i \(-0.760422\pi\)
−0.729877 + 0.683579i \(0.760422\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.57649 0.521540
\(78\) 0 0
\(79\) −12.9443 −1.45634 −0.728172 0.685394i \(-0.759630\pi\)
−0.728172 + 0.685394i \(0.759630\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −16.7642 −1.84011 −0.920057 0.391785i \(-0.871858\pi\)
−0.920057 + 0.391785i \(0.871858\pi\)
\(84\) 0 0
\(85\) −3.23607 −0.351001
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.57649 0.485107 0.242554 0.970138i \(-0.422015\pi\)
0.242554 + 0.970138i \(0.422015\pi\)
\(90\) 0 0
\(91\) −5.23607 −0.548889
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.70246 0.379864
\(96\) 0 0
\(97\) 9.41641 0.956091 0.478046 0.878335i \(-0.341345\pi\)
0.478046 + 0.878335i \(0.341345\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 13.9358 1.38666 0.693332 0.720618i \(-0.256142\pi\)
0.693332 + 0.720618i \(0.256142\pi\)
\(102\) 0 0
\(103\) 4.94427 0.487174 0.243587 0.969879i \(-0.421676\pi\)
0.243587 + 0.969879i \(0.421676\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.5231 −1.30733 −0.653666 0.756783i \(-0.726770\pi\)
−0.653666 + 0.756783i \(0.726770\pi\)
\(108\) 0 0
\(109\) −10.9443 −1.04827 −0.524136 0.851635i \(-0.675611\pi\)
−0.524136 + 0.851635i \(0.675611\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.69161 −0.817638 −0.408819 0.912615i \(-0.634059\pi\)
−0.408819 + 0.912615i \(0.634059\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.874032 0.0801224
\(120\) 0 0
\(121\) 9.94427 0.904025
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −13.7295 −1.22800
\(126\) 0 0
\(127\) −18.4721 −1.63914 −0.819569 0.572981i \(-0.805787\pi\)
−0.819569 + 0.572981i \(0.805787\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.35931 −0.817727 −0.408864 0.912596i \(-0.634075\pi\)
−0.408864 + 0.912596i \(0.634075\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.3060 1.56398 0.781992 0.623288i \(-0.214204\pi\)
0.781992 + 0.623288i \(0.214204\pi\)
\(138\) 0 0
\(139\) 1.52786 0.129592 0.0647959 0.997899i \(-0.479360\pi\)
0.0647959 + 0.997899i \(0.479360\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −23.9628 −2.00387
\(144\) 0 0
\(145\) −17.7082 −1.47059
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.40492 −0.606635 −0.303317 0.952890i \(-0.598094\pi\)
−0.303317 + 0.952890i \(0.598094\pi\)
\(150\) 0 0
\(151\) −12.9443 −1.05339 −0.526695 0.850054i \(-0.676569\pi\)
−0.526695 + 0.850054i \(0.676569\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 26.7912 2.15192
\(156\) 0 0
\(157\) 0.472136 0.0376806 0.0188403 0.999823i \(-0.494003\pi\)
0.0188403 + 0.999823i \(0.494003\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.08036 0.0851445
\(162\) 0 0
\(163\) 0.763932 0.0598358 0.0299179 0.999552i \(-0.490475\pi\)
0.0299179 + 0.999552i \(0.490475\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.06952 0.469673 0.234837 0.972035i \(-0.424544\pi\)
0.234837 + 0.972035i \(0.424544\pi\)
\(168\) 0 0
\(169\) 14.4164 1.10895
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −15.8902 −1.20811 −0.604055 0.796943i \(-0.706449\pi\)
−0.604055 + 0.796943i \(0.706449\pi\)
\(174\) 0 0
\(175\) 8.70820 0.658278
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −23.0888 −1.72574 −0.862868 0.505429i \(-0.831334\pi\)
−0.862868 + 0.505429i \(0.831334\pi\)
\(180\) 0 0
\(181\) 15.8885 1.18099 0.590493 0.807043i \(-0.298933\pi\)
0.590493 + 0.807043i \(0.298933\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 22.2148 1.63326
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.57649 −0.331143 −0.165572 0.986198i \(-0.552947\pi\)
−0.165572 + 0.986198i \(0.552947\pi\)
\(192\) 0 0
\(193\) −5.41641 −0.389882 −0.194941 0.980815i \(-0.562451\pi\)
−0.194941 + 0.980815i \(0.562451\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.99226 −0.498178 −0.249089 0.968481i \(-0.580131\pi\)
−0.249089 + 0.968481i \(0.580131\pi\)
\(198\) 0 0
\(199\) −3.05573 −0.216615 −0.108307 0.994117i \(-0.534543\pi\)
−0.108307 + 0.994117i \(0.534543\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.78282 0.335688
\(204\) 0 0
\(205\) −16.9443 −1.18344
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.57649 −0.316563
\(210\) 0 0
\(211\) −11.4164 −0.785938 −0.392969 0.919552i \(-0.628552\pi\)
−0.392969 + 0.919552i \(0.628552\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −45.0972 −3.07560
\(216\) 0 0
\(217\) −7.23607 −0.491216
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.57649 −0.307848
\(222\) 0 0
\(223\) −0.763932 −0.0511567 −0.0255783 0.999673i \(-0.508143\pi\)
−0.0255783 + 0.999673i \(0.508143\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.5579 −1.09899 −0.549493 0.835498i \(-0.685179\pi\)
−0.549493 + 0.835498i \(0.685179\pi\)
\(228\) 0 0
\(229\) 26.3607 1.74196 0.870981 0.491316i \(-0.163484\pi\)
0.870981 + 0.491316i \(0.163484\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −20.8794 −1.36785 −0.683926 0.729551i \(-0.739729\pi\)
−0.683926 + 0.729551i \(0.739729\pi\)
\(234\) 0 0
\(235\) 37.1246 2.42174
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −23.2951 −1.50684 −0.753418 0.657542i \(-0.771596\pi\)
−0.753418 + 0.657542i \(0.771596\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.70246 −0.236541
\(246\) 0 0
\(247\) 5.23607 0.333163
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.61435 0.606853 0.303426 0.952855i \(-0.401869\pi\)
0.303426 + 0.952855i \(0.401869\pi\)
\(252\) 0 0
\(253\) 4.94427 0.310844
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −21.1344 −1.31833 −0.659164 0.752000i \(-0.729090\pi\)
−0.659164 + 0.752000i \(0.729090\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.82068 0.605569 0.302785 0.953059i \(-0.402084\pi\)
0.302785 + 0.953059i \(0.402084\pi\)
\(264\) 0 0
\(265\) −34.6525 −2.12868
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.3168 −0.811940 −0.405970 0.913886i \(-0.633066\pi\)
−0.405970 + 0.913886i \(0.633066\pi\)
\(270\) 0 0
\(271\) −15.4164 −0.936480 −0.468240 0.883601i \(-0.655112\pi\)
−0.468240 + 0.883601i \(0.655112\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 39.8530 2.40323
\(276\) 0 0
\(277\) −13.2361 −0.795278 −0.397639 0.917542i \(-0.630170\pi\)
−0.397639 + 0.917542i \(0.630170\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.5123 −1.10435 −0.552175 0.833728i \(-0.686202\pi\)
−0.552175 + 0.833728i \(0.686202\pi\)
\(282\) 0 0
\(283\) −2.47214 −0.146953 −0.0734766 0.997297i \(-0.523409\pi\)
−0.0734766 + 0.997297i \(0.523409\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.57649 0.270142
\(288\) 0 0
\(289\) −16.2361 −0.955063
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.41577 0.141131 0.0705653 0.997507i \(-0.477520\pi\)
0.0705653 + 0.997507i \(0.477520\pi\)
\(294\) 0 0
\(295\) −46.8328 −2.72671
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.65685 −0.327144
\(300\) 0 0
\(301\) 12.1803 0.702063
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 40.5207 2.32021
\(306\) 0 0
\(307\) 8.18034 0.466877 0.233438 0.972372i \(-0.425002\pi\)
0.233438 + 0.972372i \(0.425002\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 27.2526 1.54535 0.772677 0.634799i \(-0.218917\pi\)
0.772677 + 0.634799i \(0.218917\pi\)
\(312\) 0 0
\(313\) −34.3607 −1.94218 −0.971090 0.238713i \(-0.923275\pi\)
−0.971090 + 0.238713i \(0.923275\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.4242 1.37180 0.685900 0.727696i \(-0.259409\pi\)
0.685900 + 0.727696i \(0.259409\pi\)
\(318\) 0 0
\(319\) 21.8885 1.22552
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.874032 −0.0486324
\(324\) 0 0
\(325\) −45.5967 −2.52925
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10.0270 −0.552807
\(330\) 0 0
\(331\) 15.4164 0.847362 0.423681 0.905811i \(-0.360738\pi\)
0.423681 + 0.905811i \(0.360738\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −23.9628 −1.30923
\(336\) 0 0
\(337\) −35.8885 −1.95497 −0.977487 0.210997i \(-0.932329\pi\)
−0.977487 + 0.210997i \(0.932329\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −33.1158 −1.79332
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −18.9737 −1.01856 −0.509280 0.860601i \(-0.670088\pi\)
−0.509280 + 0.860601i \(0.670088\pi\)
\(348\) 0 0
\(349\) −13.4164 −0.718164 −0.359082 0.933306i \(-0.616910\pi\)
−0.359082 + 0.933306i \(0.616910\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.6808 0.728154 0.364077 0.931369i \(-0.381385\pi\)
0.364077 + 0.931369i \(0.381385\pi\)
\(354\) 0 0
\(355\) 0.763932 0.0405453
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.7295 0.724614 0.362307 0.932059i \(-0.381989\pi\)
0.362307 + 0.932059i \(0.381989\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 46.1776 2.41704
\(366\) 0 0
\(367\) −24.3607 −1.27162 −0.635809 0.771847i \(-0.719333\pi\)
−0.635809 + 0.771847i \(0.719333\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.35931 0.485911
\(372\) 0 0
\(373\) −22.9443 −1.18801 −0.594005 0.804462i \(-0.702454\pi\)
−0.594005 + 0.804462i \(0.702454\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −25.0432 −1.28979
\(378\) 0 0
\(379\) −7.05573 −0.362428 −0.181214 0.983444i \(-0.558003\pi\)
−0.181214 + 0.983444i \(0.558003\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.90879 0.199730 0.0998649 0.995001i \(-0.468159\pi\)
0.0998649 + 0.995001i \(0.468159\pi\)
\(384\) 0 0
\(385\) −16.9443 −0.863560
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.412662 −0.0209228 −0.0104614 0.999945i \(-0.503330\pi\)
−0.0104614 + 0.999945i \(0.503330\pi\)
\(390\) 0 0
\(391\) 0.944272 0.0477539
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 47.9256 2.41140
\(396\) 0 0
\(397\) 31.8885 1.60044 0.800220 0.599706i \(-0.204716\pi\)
0.800220 + 0.599706i \(0.204716\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.28980 −0.164285 −0.0821423 0.996621i \(-0.526176\pi\)
−0.0821423 + 0.996621i \(0.526176\pi\)
\(402\) 0 0
\(403\) 37.8885 1.88736
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −27.4589 −1.36109
\(408\) 0 0
\(409\) 11.7082 0.578933 0.289467 0.957188i \(-0.406522\pi\)
0.289467 + 0.957188i \(0.406522\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.6491 0.622422
\(414\) 0 0
\(415\) 62.0689 3.04684
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.69936 0.0830190 0.0415095 0.999138i \(-0.486783\pi\)
0.0415095 + 0.999138i \(0.486783\pi\)
\(420\) 0 0
\(421\) 30.3607 1.47969 0.739844 0.672778i \(-0.234899\pi\)
0.739844 + 0.672778i \(0.234899\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.61125 0.369200
\(426\) 0 0
\(427\) −10.9443 −0.529630
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.7534 1.04782 0.523912 0.851772i \(-0.324472\pi\)
0.523912 + 0.851772i \(0.324472\pi\)
\(432\) 0 0
\(433\) −0.111456 −0.00535624 −0.00267812 0.999996i \(-0.500852\pi\)
−0.00267812 + 0.999996i \(0.500852\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.08036 −0.0516808
\(438\) 0 0
\(439\) 38.0689 1.81693 0.908464 0.417962i \(-0.137256\pi\)
0.908464 + 0.417962i \(0.137256\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 35.1189 1.66855 0.834275 0.551349i \(-0.185887\pi\)
0.834275 + 0.551349i \(0.185887\pi\)
\(444\) 0 0
\(445\) −16.9443 −0.803236
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −31.5741 −1.49007 −0.745036 0.667024i \(-0.767568\pi\)
−0.745036 + 0.667024i \(0.767568\pi\)
\(450\) 0 0
\(451\) 20.9443 0.986227
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 19.3863 0.908845
\(456\) 0 0
\(457\) −26.7639 −1.25196 −0.625982 0.779838i \(-0.715302\pi\)
−0.625982 + 0.779838i \(0.715302\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 40.0593 1.86575 0.932875 0.360200i \(-0.117292\pi\)
0.932875 + 0.360200i \(0.117292\pi\)
\(462\) 0 0
\(463\) 7.05573 0.327907 0.163954 0.986468i \(-0.447575\pi\)
0.163954 + 0.986468i \(0.447575\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.5958 0.999333 0.499666 0.866218i \(-0.333456\pi\)
0.499666 + 0.866218i \(0.333456\pi\)
\(468\) 0 0
\(469\) 6.47214 0.298855
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 55.7432 2.56308
\(474\) 0 0
\(475\) −8.70820 −0.399560
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.8369 1.13482 0.567412 0.823434i \(-0.307945\pi\)
0.567412 + 0.823434i \(0.307945\pi\)
\(480\) 0 0
\(481\) 31.4164 1.43246
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −34.8639 −1.58309
\(486\) 0 0
\(487\) −10.8328 −0.490882 −0.245441 0.969412i \(-0.578933\pi\)
−0.245441 + 0.969412i \(0.578933\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.9814 −0.540713 −0.270357 0.962760i \(-0.587142\pi\)
−0.270357 + 0.962760i \(0.587142\pi\)
\(492\) 0 0
\(493\) 4.18034 0.188273
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.206331 −0.00925521
\(498\) 0 0
\(499\) 11.0557 0.494922 0.247461 0.968898i \(-0.420404\pi\)
0.247461 + 0.968898i \(0.420404\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19.3376 −0.862222 −0.431111 0.902299i \(-0.641878\pi\)
−0.431111 + 0.902299i \(0.641878\pi\)
\(504\) 0 0
\(505\) −51.5967 −2.29603
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.1344 0.936765 0.468383 0.883526i \(-0.344837\pi\)
0.468383 + 0.883526i \(0.344837\pi\)
\(510\) 0 0
\(511\) −12.4721 −0.551735
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −18.3060 −0.806657
\(516\) 0 0
\(517\) −45.8885 −2.01818
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.3029 −0.714241 −0.357121 0.934058i \(-0.616242\pi\)
−0.357121 + 0.934058i \(0.616242\pi\)
\(522\) 0 0
\(523\) 14.2918 0.624937 0.312468 0.949928i \(-0.398844\pi\)
0.312468 + 0.949928i \(0.398844\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.32456 −0.275502
\(528\) 0 0
\(529\) −21.8328 −0.949253
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −23.9628 −1.03794
\(534\) 0 0
\(535\) 50.0689 2.16467
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.57649 0.197123
\(540\) 0 0
\(541\) −13.4164 −0.576816 −0.288408 0.957508i \(-0.593126\pi\)
−0.288408 + 0.957508i \(0.593126\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 40.5207 1.73572
\(546\) 0 0
\(547\) −24.9443 −1.06654 −0.533270 0.845945i \(-0.679037\pi\)
−0.533270 + 0.845945i \(0.679037\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.78282 −0.203755
\(552\) 0 0
\(553\) −12.9443 −0.550446
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12.2364 −0.518475 −0.259237 0.965814i \(-0.583471\pi\)
−0.259237 + 0.965814i \(0.583471\pi\)
\(558\) 0 0
\(559\) −63.7771 −2.69748
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.8933 −0.754113 −0.377056 0.926190i \(-0.623064\pi\)
−0.377056 + 0.926190i \(0.623064\pi\)
\(564\) 0 0
\(565\) 32.1803 1.35384
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.4288 0.646810 0.323405 0.946261i \(-0.395172\pi\)
0.323405 + 0.946261i \(0.395172\pi\)
\(570\) 0 0
\(571\) 15.0557 0.630063 0.315031 0.949081i \(-0.397985\pi\)
0.315031 + 0.949081i \(0.397985\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.40802 0.392342
\(576\) 0 0
\(577\) 14.3607 0.597843 0.298921 0.954278i \(-0.403373\pi\)
0.298921 + 0.954278i \(0.403373\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16.7642 −0.695498
\(582\) 0 0
\(583\) 42.8328 1.77395
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.44742 0.142290 0.0711451 0.997466i \(-0.477335\pi\)
0.0711451 + 0.997466i \(0.477335\pi\)
\(588\) 0 0
\(589\) 7.23607 0.298157
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.9172 1.06429 0.532146 0.846652i \(-0.321386\pi\)
0.532146 + 0.846652i \(0.321386\pi\)
\(594\) 0 0
\(595\) −3.23607 −0.132666
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −19.5927 −0.800534 −0.400267 0.916398i \(-0.631083\pi\)
−0.400267 + 0.916398i \(0.631083\pi\)
\(600\) 0 0
\(601\) 13.4164 0.547267 0.273633 0.961834i \(-0.411775\pi\)
0.273633 + 0.961834i \(0.411775\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −36.8183 −1.49688
\(606\) 0 0
\(607\) −29.8885 −1.21314 −0.606569 0.795031i \(-0.707455\pi\)
−0.606569 + 0.795031i \(0.707455\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 52.5021 2.12401
\(612\) 0 0
\(613\) 37.5967 1.51852 0.759259 0.650788i \(-0.225561\pi\)
0.759259 + 0.650788i \(0.225561\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −42.2688 −1.70168 −0.850839 0.525427i \(-0.823906\pi\)
−0.850839 + 0.525427i \(0.823906\pi\)
\(618\) 0 0
\(619\) −1.52786 −0.0614100 −0.0307050 0.999528i \(-0.509775\pi\)
−0.0307050 + 0.999528i \(0.509775\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.57649 0.183353
\(624\) 0 0
\(625\) 7.29180 0.291672
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.24419 −0.209100
\(630\) 0 0
\(631\) 24.1803 0.962604 0.481302 0.876555i \(-0.340164\pi\)
0.481302 + 0.876555i \(0.340164\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 68.3923 2.71407
\(636\) 0 0
\(637\) −5.23607 −0.207461
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.03476 0.119866 0.0599329 0.998202i \(-0.480911\pi\)
0.0599329 + 0.998202i \(0.480911\pi\)
\(642\) 0 0
\(643\) 13.5279 0.533487 0.266743 0.963768i \(-0.414052\pi\)
0.266743 + 0.963768i \(0.414052\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −36.9759 −1.45367 −0.726836 0.686811i \(-0.759010\pi\)
−0.726836 + 0.686811i \(0.759010\pi\)
\(648\) 0 0
\(649\) 57.8885 2.27232
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.6491 −0.494998 −0.247499 0.968888i \(-0.579609\pi\)
−0.247499 + 0.968888i \(0.579609\pi\)
\(654\) 0 0
\(655\) 34.6525 1.35398
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22.0084 0.857326 0.428663 0.903464i \(-0.358985\pi\)
0.428663 + 0.903464i \(0.358985\pi\)
\(660\) 0 0
\(661\) 34.1803 1.32946 0.664731 0.747083i \(-0.268546\pi\)
0.664731 + 0.747083i \(0.268546\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.70246 0.143575
\(666\) 0 0
\(667\) 5.16718 0.200074
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −50.0864 −1.93356
\(672\) 0 0
\(673\) 19.3050 0.744151 0.372076 0.928202i \(-0.378646\pi\)
0.372076 + 0.928202i \(0.378646\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −33.2734 −1.27880 −0.639401 0.768874i \(-0.720818\pi\)
−0.639401 + 0.768874i \(0.720818\pi\)
\(678\) 0 0
\(679\) 9.41641 0.361369
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.461370 −0.0176538 −0.00882692 0.999961i \(-0.502810\pi\)
−0.00882692 + 0.999961i \(0.502810\pi\)
\(684\) 0 0
\(685\) −67.7771 −2.58963
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −49.0060 −1.86698
\(690\) 0 0
\(691\) −50.2492 −1.91157 −0.955785 0.294065i \(-0.904992\pi\)
−0.955785 + 0.294065i \(0.904992\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.65685 −0.214577
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.99226 −0.264094 −0.132047 0.991243i \(-0.542155\pi\)
−0.132047 + 0.991243i \(0.542155\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.9358 0.524110
\(708\) 0 0
\(709\) 4.29180 0.161182 0.0805909 0.996747i \(-0.474319\pi\)
0.0805909 + 0.996747i \(0.474319\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.81758 −0.292771
\(714\) 0 0
\(715\) 88.7214 3.31799
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.03165 0.0384742 0.0192371 0.999815i \(-0.493876\pi\)
0.0192371 + 0.999815i \(0.493876\pi\)
\(720\) 0 0
\(721\) 4.94427 0.184134
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 41.6498 1.54683
\(726\) 0 0
\(727\) −2.11146 −0.0783096 −0.0391548 0.999233i \(-0.512467\pi\)
−0.0391548 + 0.999233i \(0.512467\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 10.6460 0.393757
\(732\) 0 0
\(733\) 10.5836 0.390914 0.195457 0.980712i \(-0.437381\pi\)
0.195457 + 0.980712i \(0.437381\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 29.6197 1.09105
\(738\) 0 0
\(739\) −22.0689 −0.811817 −0.405909 0.913914i \(-0.633045\pi\)
−0.405909 + 0.913914i \(0.633045\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 25.2495 0.926315 0.463157 0.886276i \(-0.346716\pi\)
0.463157 + 0.886276i \(0.346716\pi\)
\(744\) 0 0
\(745\) 27.4164 1.00446
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.5231 −0.494125
\(750\) 0 0
\(751\) 3.05573 0.111505 0.0557526 0.998445i \(-0.482244\pi\)
0.0557526 + 0.998445i \(0.482244\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 47.9256 1.74419
\(756\) 0 0
\(757\) −14.5836 −0.530050 −0.265025 0.964242i \(-0.585380\pi\)
−0.265025 + 0.964242i \(0.585380\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15.9389 0.577785 0.288892 0.957362i \(-0.406713\pi\)
0.288892 + 0.957362i \(0.406713\pi\)
\(762\) 0 0
\(763\) −10.9443 −0.396209
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −66.2316 −2.39148
\(768\) 0 0
\(769\) 19.3050 0.696154 0.348077 0.937466i \(-0.386835\pi\)
0.348077 + 0.937466i \(0.386835\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −26.3786 −0.948772 −0.474386 0.880317i \(-0.657330\pi\)
−0.474386 + 0.880317i \(0.657330\pi\)
\(774\) 0 0
\(775\) −63.0132 −2.26350
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.57649 −0.163970
\(780\) 0 0
\(781\) −0.944272 −0.0337887
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.74806 −0.0623911
\(786\) 0 0
\(787\) −19.2361 −0.685692 −0.342846 0.939392i \(-0.611391\pi\)
−0.342846 + 0.939392i \(0.611391\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.69161 −0.309038
\(792\) 0 0
\(793\) 57.3050 2.03496
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5.40182 −0.191342 −0.0956711 0.995413i \(-0.530500\pi\)
−0.0956711 + 0.995413i \(0.530500\pi\)
\(798\) 0 0
\(799\) −8.76393 −0.310046
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −57.0786 −2.01426
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −37.4373 −1.31622 −0.658112 0.752920i \(-0.728645\pi\)
−0.658112 + 0.752920i \(0.728645\pi\)
\(810\) 0 0
\(811\) −0.944272 −0.0331579 −0.0165789 0.999863i \(-0.505277\pi\)
−0.0165789 + 0.999863i \(0.505277\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.82843 −0.0990755
\(816\) 0 0
\(817\) −12.1803 −0.426136
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.922740 −0.0322039 −0.0161019 0.999870i \(-0.505126\pi\)
−0.0161019 + 0.999870i \(0.505126\pi\)
\(822\) 0 0
\(823\) 25.3475 0.883559 0.441780 0.897124i \(-0.354347\pi\)
0.441780 + 0.897124i \(0.354347\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.27585 0.218233 0.109116 0.994029i \(-0.465198\pi\)
0.109116 + 0.994029i \(0.465198\pi\)
\(828\) 0 0
\(829\) −2.58359 −0.0897319 −0.0448659 0.998993i \(-0.514286\pi\)
−0.0448659 + 0.998993i \(0.514286\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.874032 0.0302834
\(834\) 0 0
\(835\) −22.4721 −0.777680
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 36.6119 1.26398 0.631992 0.774975i \(-0.282238\pi\)
0.631992 + 0.774975i \(0.282238\pi\)
\(840\) 0 0
\(841\) −6.12461 −0.211194
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −53.3762 −1.83620
\(846\) 0 0
\(847\) 9.94427 0.341689
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6.48218 −0.222206
\(852\) 0 0
\(853\) 15.5279 0.531664 0.265832 0.964019i \(-0.414353\pi\)
0.265832 + 0.964019i \(0.414353\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.8453 1.60020 0.800102 0.599864i \(-0.204779\pi\)
0.800102 + 0.599864i \(0.204779\pi\)
\(858\) 0 0
\(859\) 8.58359 0.292868 0.146434 0.989220i \(-0.453220\pi\)
0.146434 + 0.989220i \(0.453220\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −46.2263 −1.57356 −0.786780 0.617233i \(-0.788254\pi\)
−0.786780 + 0.617233i \(0.788254\pi\)
\(864\) 0 0
\(865\) 58.8328 2.00038
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −59.2393 −2.00956
\(870\) 0 0
\(871\) −33.8885 −1.14827
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13.7295 −0.464141
\(876\) 0 0
\(877\) −24.8328 −0.838545 −0.419272 0.907861i \(-0.637715\pi\)
−0.419272 + 0.907861i \(0.637715\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 58.1103 1.95778 0.978892 0.204376i \(-0.0655165\pi\)
0.978892 + 0.204376i \(0.0655165\pi\)
\(882\) 0 0
\(883\) 24.0000 0.807664 0.403832 0.914833i \(-0.367678\pi\)
0.403832 + 0.914833i \(0.367678\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.0540 0.673348 0.336674 0.941621i \(-0.390698\pi\)
0.336674 + 0.941621i \(0.390698\pi\)
\(888\) 0 0
\(889\) −18.4721 −0.619536
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.0270 0.335541
\(894\) 0 0
\(895\) 85.4853 2.85746
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −34.6088 −1.15427
\(900\) 0 0
\(901\) 8.18034 0.272527
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −58.8267 −1.95547
\(906\) 0 0
\(907\) 3.05573 0.101464 0.0507319 0.998712i \(-0.483845\pi\)
0.0507319 + 0.998712i \(0.483845\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8.12133 −0.269072 −0.134536 0.990909i \(-0.542954\pi\)
−0.134536 + 0.990909i \(0.542954\pi\)
\(912\) 0 0
\(913\) −76.7214 −2.53911
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9.35931 −0.309072
\(918\) 0 0
\(919\) 20.9443 0.690888 0.345444 0.938439i \(-0.387728\pi\)
0.345444 + 0.938439i \(0.387728\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.08036 0.0355606
\(924\) 0 0
\(925\) −52.2492 −1.71794
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 50.1351 1.64488 0.822439 0.568853i \(-0.192613\pi\)
0.822439 + 0.568853i \(0.192613\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −14.8098 −0.484333
\(936\) 0 0
\(937\) −36.8328 −1.20328 −0.601638 0.798769i \(-0.705485\pi\)
−0.601638 + 0.798769i \(0.705485\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.65375 −0.119109 −0.0595544 0.998225i \(-0.518968\pi\)
−0.0595544 + 0.998225i \(0.518968\pi\)
\(942\) 0 0
\(943\) 4.94427 0.161008
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.3941 0.402753 0.201377 0.979514i \(-0.435458\pi\)
0.201377 + 0.979514i \(0.435458\pi\)
\(948\) 0 0
\(949\) 65.3050 2.11989
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −24.5818 −0.796283 −0.398141 0.917324i \(-0.630345\pi\)
−0.398141 + 0.917324i \(0.630345\pi\)
\(954\) 0 0
\(955\) 16.9443 0.548304
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 18.3060 0.591130
\(960\) 0 0
\(961\) 21.3607 0.689054
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 20.0540 0.645562
\(966\) 0 0
\(967\) −19.2361 −0.618590 −0.309295 0.950966i \(-0.600093\pi\)
−0.309295 + 0.950966i \(0.600093\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.65685 −0.181537 −0.0907685 0.995872i \(-0.528932\pi\)
−0.0907685 + 0.995872i \(0.528932\pi\)
\(972\) 0 0
\(973\) 1.52786 0.0489811
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.61125 −0.243505 −0.121753 0.992560i \(-0.538851\pi\)
−0.121753 + 0.992560i \(0.538851\pi\)
\(978\) 0 0
\(979\) 20.9443 0.669382
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.6057 1.03996 0.519981 0.854178i \(-0.325939\pi\)
0.519981 + 0.854178i \(0.325939\pi\)
\(984\) 0 0
\(985\) 25.8885 0.824878
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 13.1592 0.418438
\(990\) 0 0
\(991\) 36.0000 1.14358 0.571789 0.820401i \(-0.306250\pi\)
0.571789 + 0.820401i \(0.306250\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.3137 0.358669
\(996\) 0 0
\(997\) −36.4721 −1.15508 −0.577542 0.816361i \(-0.695988\pi\)
−0.577542 + 0.816361i \(0.695988\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4788.2.a.r.1.1 4
3.2 odd 2 inner 4788.2.a.r.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4788.2.a.r.1.1 4 1.1 even 1 trivial
4788.2.a.r.1.4 yes 4 3.2 odd 2 inner