Properties

Label 4788.2.dq
Level 47884788
Weight 22
Character orbit 4788.dq
Rep. character χ4788(2357,)\chi_{4788}(2357,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 9696
Newform subspaces 11
Sturm bound 19201920
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 4788=2232719 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4788.dq (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 1 1
Sturm bound: 19201920
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(4788,[χ])M_{2}(4788, [\chi]).

Total New Old
Modular forms 1968 96 1872
Cusp forms 1872 96 1776
Eisenstein series 96 0 96

Trace form

96q8q756q25+24q31+40q43+20q4948q6712q73+8q79+40q8588q91+O(q100) 96 q - 8 q^{7} - 56 q^{25} + 24 q^{31} + 40 q^{43} + 20 q^{49} - 48 q^{67} - 12 q^{73} + 8 q^{79} + 40 q^{85} - 88 q^{91}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(4788,[χ])S_{2}^{\mathrm{new}}(4788, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
4788.2.dq.a 4788.dq 21.g 9696 38.23238.232 None 4788.2.dq.a 00 00 00 8-8 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S2old(4788,[χ])S_{2}^{\mathrm{old}}(4788, [\chi]) into lower level spaces