Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4788, [\chi])\).
|
Total |
New |
Old |
Modular forms
| 1968 |
96 |
1872 |
Cusp forms
| 1872 |
96 |
1776 |
Eisenstein series
| 96 |
0 |
96 |
\( S_{2}^{\mathrm{old}}(4788, [\chi]) \simeq \)
\(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 12}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(798, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(1197, [\chi])\)\(^{\oplus 3}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(1596, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(2394, [\chi])\)\(^{\oplus 2}\)