Properties

Label 48.2
Level 48
Weight 2
Dimension 23
Nonzero newspaces 4
Newform subspaces 4
Sturm bound 256
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 4 \)
Sturm bound: \(256\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(48))\).

Total New Old
Modular forms 92 31 61
Cusp forms 37 23 14
Eisenstein series 55 8 47

Trace form

\( 23 q - q^{3} - 8 q^{4} - 2 q^{5} - 8 q^{6} - 8 q^{7} - 12 q^{8} - 5 q^{9} - 8 q^{10} - 12 q^{11} - 10 q^{13} + 12 q^{14} - 10 q^{15} + 16 q^{16} + 2 q^{17} + 8 q^{18} - 16 q^{19} + 16 q^{20} + 4 q^{21}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
48.2.a \(\chi_{48}(1, \cdot)\) 48.2.a.a 1 1
48.2.c \(\chi_{48}(47, \cdot)\) 48.2.c.a 2 1
48.2.d \(\chi_{48}(25, \cdot)\) None 0 1
48.2.f \(\chi_{48}(23, \cdot)\) None 0 1
48.2.j \(\chi_{48}(13, \cdot)\) 48.2.j.a 8 2
48.2.k \(\chi_{48}(11, \cdot)\) 48.2.k.a 12 2

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(48))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(48)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 1}\)