Properties

Label 48.2
Level 48
Weight 2
Dimension 23
Nonzero newspaces 4
Newform subspaces 4
Sturm bound 256
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 48=243 48 = 2^{4} \cdot 3
Weight: k k = 2 2
Nonzero newspaces: 4 4
Newform subspaces: 4 4
Sturm bound: 256256
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(48))M_{2}(\Gamma_1(48)).

Total New Old
Modular forms 92 31 61
Cusp forms 37 23 14
Eisenstein series 55 8 47

Trace form

23qq38q42q58q68q712q85q98q1012q1110q13+12q1410q15+16q16+2q17+8q1816q19+16q20+4q21+64q99+O(q100) 23 q - q^{3} - 8 q^{4} - 2 q^{5} - 8 q^{6} - 8 q^{7} - 12 q^{8} - 5 q^{9} - 8 q^{10} - 12 q^{11} - 10 q^{13} + 12 q^{14} - 10 q^{15} + 16 q^{16} + 2 q^{17} + 8 q^{18} - 16 q^{19} + 16 q^{20} + 4 q^{21}+ \cdots - 64 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(48))S_{2}^{\mathrm{new}}(\Gamma_1(48))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
48.2.a χ48(1,)\chi_{48}(1, \cdot) 48.2.a.a 1 1
48.2.c χ48(47,)\chi_{48}(47, \cdot) 48.2.c.a 2 1
48.2.d χ48(25,)\chi_{48}(25, \cdot) None 0 1
48.2.f χ48(23,)\chi_{48}(23, \cdot) None 0 1
48.2.j χ48(13,)\chi_{48}(13, \cdot) 48.2.j.a 8 2
48.2.k χ48(11,)\chi_{48}(11, \cdot) 48.2.k.a 12 2

Decomposition of S2old(Γ1(48))S_{2}^{\mathrm{old}}(\Gamma_1(48)) into lower level spaces