Properties

Label 48.22.a
Level $48$
Weight $22$
Character orbit 48.a
Rep. character $\chi_{48}(1,\cdot)$
Character field $\Q$
Dimension $21$
Newform subspaces $12$
Sturm bound $176$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 48.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(176\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(48))\).

Total New Old
Modular forms 174 21 153
Cusp forms 162 21 141
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(5\)
\(+\)\(-\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(5\)
\(-\)\(-\)\(+\)\(5\)
Plus space\(+\)\(10\)
Minus space\(-\)\(11\)

Trace form

\( 21 q + 59049 q^{3} + 20783558 q^{5} + 3921376 q^{7} + 73222472421 q^{9} - 67333320740 q^{11} + 107655263398 q^{13} - 1153300781250 q^{15} + 1740714497002 q^{17} + 82838787800292 q^{19} - 418452746476856 q^{23}+ \cdots - 23\!\cdots\!40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(48))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
48.22.a.a 48.a 1.a $1$ $134.149$ \(\Q\) None 6.22.a.c \(0\) \(-59049\) \(-23245050\) \(1322977768\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{10}q^{3}-23245050q^{5}+1322977768q^{7}+\cdots\)
48.22.a.b 48.a 1.a $1$ $134.149$ \(\Q\) None 12.22.a.a \(0\) \(-59049\) \(-11268090\) \(-281914136\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{10}q^{3}-11268090q^{5}-281914136q^{7}+\cdots\)
48.22.a.c 48.a 1.a $1$ $134.149$ \(\Q\) None 6.22.a.a \(0\) \(-59049\) \(26444550\) \(-166115864\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{10}q^{3}+26444550q^{5}-166115864q^{7}+\cdots\)
48.22.a.d 48.a 1.a $1$ $134.149$ \(\Q\) None 3.22.a.b \(0\) \(59049\) \(-41512770\) \(-538429808\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{10}q^{3}-41512770q^{5}-538429808q^{7}+\cdots\)
48.22.a.e 48.a 1.a $1$ $134.149$ \(\Q\) None 3.22.a.a \(0\) \(59049\) \(3109950\) \(-363303920\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{10}q^{3}+3109950q^{5}-363303920q^{7}+\cdots\)
48.22.a.f 48.a 1.a $1$ $134.149$ \(\Q\) None 6.22.a.b \(0\) \(59049\) \(12954174\) \(479513104\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{10}q^{3}+12954174q^{5}+479513104q^{7}+\cdots\)
48.22.a.g 48.a 1.a $2$ $134.149$ \(\Q(\sqrt{649}) \) None 3.22.a.c \(0\) \(-118098\) \(996876\) \(-679896112\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{10}q^{3}+(498438+53\beta )q^{5}+(-339948056+\cdots)q^{7}+\cdots\)
48.22.a.h 48.a 1.a $2$ $134.149$ \(\Q(\sqrt{537541}) \) None 24.22.a.a \(0\) \(-118098\) \(21948620\) \(659451408\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{10}q^{3}+(10974310-5\beta )q^{5}+(329725704+\cdots)q^{7}+\cdots\)
48.22.a.i 48.a 1.a $2$ $134.149$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 12.22.a.b \(0\) \(118098\) \(28827900\) \(-509669728\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{10}q^{3}+(14413950-5\beta )q^{5}+(-254834864+\cdots)q^{7}+\cdots\)
48.22.a.j 48.a 1.a $3$ $134.149$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 24.22.a.d \(0\) \(-177147\) \(5280498\) \(-852542376\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{10}q^{3}+(1760166-\beta _{1})q^{5}+(-284180792+\cdots)q^{7}+\cdots\)
48.22.a.k 48.a 1.a $3$ $134.149$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 24.22.a.b \(0\) \(177147\) \(-4833126\) \(-271431024\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{10}q^{3}+(-1611042-\beta _{1})q^{5}+\cdots\)
48.22.a.l 48.a 1.a $3$ $134.149$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 24.22.a.c \(0\) \(177147\) \(2080026\) \(1205282064\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{10}q^{3}+(693342+\beta _{1})q^{5}+(401760688+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(48))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_0(48)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)