Defining parameters
Level: | \( N \) | \(=\) | \( 480 = 2^{5} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 480.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(480, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 16 | 96 |
Cusp forms | 80 | 16 | 64 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(480, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
480.2.h.a | $4$ | $3.833$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q+(-\beta_{2}-1)q^{3}+\beta_1 q^{5}+(2\beta_{2}-2\beta_1)q^{7}+\cdots\) |
480.2.h.b | $4$ | $3.833$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q+(-1-\zeta_{8}^{2}-\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{5}+\cdots\) |
480.2.h.c | $4$ | $3.833$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(4\) | \(0\) | \(0\) | \(q+(\beta_{2}+1)q^{3}+\beta_1 q^{5}+(-2\beta_{2}+2\beta_1)q^{7}+\cdots\) |
480.2.h.d | $4$ | $3.833$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(4\) | \(0\) | \(0\) | \(q+(1+\zeta_{8}^{2}-\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{5}+(-\zeta_{8}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(480, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)