Properties

Label 480.2.h
Level $480$
Weight $2$
Character orbit 480.h
Rep. character $\chi_{480}(191,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $4$
Sturm bound $192$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 480.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(192\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(7\), \(11\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(480, [\chi])\).

Total New Old
Modular forms 112 16 96
Cusp forms 80 16 64
Eisenstein series 32 0 32

Trace form

\( 16 q - 8 q^{9} + O(q^{10}) \) \( 16 q - 8 q^{9} + 16 q^{13} + 8 q^{21} - 16 q^{25} + 32 q^{33} - 16 q^{37} - 8 q^{45} - 32 q^{49} - 16 q^{57} - 16 q^{61} + 24 q^{69} + 64 q^{73} - 32 q^{93} - 32 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(480, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
480.2.h.a 480.h 12.b $4$ $3.833$ \(\Q(\zeta_{8})\) None 480.2.h.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}-1)q^{3}+\beta_1 q^{5}+(2\beta_{2}-2\beta_1)q^{7}+\cdots\)
480.2.h.b 480.h 12.b $4$ $3.833$ \(\Q(\zeta_{8})\) None 480.2.h.b \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\zeta_{8}^{2}-\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{5}+\cdots\)
480.2.h.c 480.h 12.b $4$ $3.833$ \(\Q(\zeta_{8})\) None 480.2.h.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}+1)q^{3}+\beta_1 q^{5}+(-2\beta_{2}+2\beta_1)q^{7}+\cdots\)
480.2.h.d 480.h 12.b $4$ $3.833$ \(\Q(\zeta_{8})\) None 480.2.h.b \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\zeta_{8}^{2}-\zeta_{8}^{3})q^{3}+\zeta_{8}^{2}q^{5}+(-\zeta_{8}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(480, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)