Properties

Label 480.2.k
Level $480$
Weight $2$
Character orbit 480.k
Rep. character $\chi_{480}(241,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $2$
Sturm bound $192$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 480.k (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(480, [\chi])\).

Total New Old
Modular forms 112 8 104
Cusp forms 80 8 72
Eisenstein series 32 0 32

Trace form

\( 8 q - 8 q^{7} - 8 q^{9} + 4 q^{15} + 16 q^{23} - 8 q^{25} - 8 q^{31} + 24 q^{49} - 16 q^{55} - 16 q^{57} + 8 q^{63} + 16 q^{71} - 16 q^{73} - 8 q^{79} + 8 q^{81} - 24 q^{87} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(480, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
480.2.k.a 480.k 8.b $2$ $3.833$ \(\Q(\sqrt{-1}) \) None 120.2.k.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+i q^{5}-2 q^{7}-q^{9}+4 i q^{11}+\cdots\)
480.2.k.b 480.k 8.b $6$ $3.833$ 6.0.399424.1 None 120.2.k.b \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+\beta _{2}q^{5}+(-1+\beta _{3})q^{7}-q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(480, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)