Properties

Label 483.2.e
Level $483$
Weight $2$
Character orbit 483.e
Rep. character $\chi_{483}(344,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $1$
Sturm bound $128$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(128\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(483, [\chi])\).

Total New Old
Modular forms 68 48 20
Cusp forms 60 48 12
Eisenstein series 8 0 8

Trace form

\( 48 q - 4 q^{3} - 40 q^{4} + 6 q^{6} + 4 q^{9} + 22 q^{12} - 8 q^{13} + 24 q^{16} - 14 q^{18} - 12 q^{24} + 88 q^{25} - 16 q^{27} - 8 q^{31} - 10 q^{36} + 8 q^{46} - 98 q^{48} - 48 q^{49} + 28 q^{52} - 28 q^{54}+ \cdots - 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(483, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
483.2.e.a 483.e 69.c $48$ $3.857$ None 483.2.e.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(483, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(483, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 2}\)