Properties

Label 483.2.u
Level 483483
Weight 22
Character orbit 483.u
Rep. character χ483(113,)\chi_{483}(113,\cdot)
Character field Q(ζ22)\Q(\zeta_{22})
Dimension 480480
Newform subspaces 11
Sturm bound 128128
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 483=3723 483 = 3 \cdot 7 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 483.u (of order 2222 and degree 1010)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 69 69
Character field: Q(ζ22)\Q(\zeta_{22})
Newform subspaces: 1 1
Sturm bound: 128128
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(483,[χ])M_{2}(483, [\chi]).

Total New Old
Modular forms 680 480 200
Cusp forms 600 480 120
Eisenstein series 80 0 80

Trace form

480q+4q3+40q46q64q922q12+8q1322q1524q1630q18120q2488q25+16q2744q30+8q3122q3344q34+10q36+132q97+O(q100) 480 q + 4 q^{3} + 40 q^{4} - 6 q^{6} - 4 q^{9} - 22 q^{12} + 8 q^{13} - 22 q^{15} - 24 q^{16} - 30 q^{18} - 120 q^{24} - 88 q^{25} + 16 q^{27} - 44 q^{30} + 8 q^{31} - 22 q^{33} - 44 q^{34} + 10 q^{36}+ \cdots - 132 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(483,[χ])S_{2}^{\mathrm{new}}(483, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
483.2.u.a 483.u 69.g 480480 3.8573.857 None 483.2.u.a 00 44 00 00 SU(2)[C22]\mathrm{SU}(2)[C_{22}]

Decomposition of S2old(483,[χ])S_{2}^{\mathrm{old}}(483, [\chi]) into lower level spaces

S2old(483,[χ]) S_{2}^{\mathrm{old}}(483, [\chi]) \simeq S2new(69,[χ])S_{2}^{\mathrm{new}}(69, [\chi])2^{\oplus 2}