Properties

Label 483.2.u
Level $483$
Weight $2$
Character orbit 483.u
Rep. character $\chi_{483}(113,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $480$
Newform subspaces $1$
Sturm bound $128$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.u (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(128\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(483, [\chi])\).

Total New Old
Modular forms 680 480 200
Cusp forms 600 480 120
Eisenstein series 80 0 80

Trace form

\( 480 q + 4 q^{3} + 40 q^{4} - 6 q^{6} - 4 q^{9} - 22 q^{12} + 8 q^{13} - 22 q^{15} - 24 q^{16} - 30 q^{18} - 120 q^{24} - 88 q^{25} + 16 q^{27} - 44 q^{30} + 8 q^{31} - 22 q^{33} - 44 q^{34} + 10 q^{36}+ \cdots - 132 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(483, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
483.2.u.a 483.u 69.g $480$ $3.857$ None 483.2.u.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$

Decomposition of \(S_{2}^{\mathrm{old}}(483, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(483, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 2}\)