Properties

Label 483.4
Level 483
Weight 4
Dimension 17936
Nonzero newspaces 16
Sturm bound 67584
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(67584\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(483))\).

Total New Old
Modular forms 25872 18352 7520
Cusp forms 24816 17936 6880
Eisenstein series 1056 416 640

Trace form

\( 17936 q - 50 q^{3} - 76 q^{4} + 48 q^{5} + 28 q^{6} - 2 q^{7} - 108 q^{8} - 122 q^{9} - 184 q^{10} + 148 q^{12} + 80 q^{13} + 624 q^{14} - 462 q^{15} - 1596 q^{16} - 328 q^{17} - 408 q^{18} - 764 q^{19}+ \cdots + 12478 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(483))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
483.4.a \(\chi_{483}(1, \cdot)\) 483.4.a.a 3 1
483.4.a.b 4
483.4.a.c 7
483.4.a.d 7
483.4.a.e 7
483.4.a.f 9
483.4.a.g 9
483.4.a.h 9
483.4.a.i 9
483.4.d \(\chi_{483}(461, \cdot)\) n/a 176 1
483.4.e \(\chi_{483}(344, \cdot)\) n/a 144 1
483.4.h \(\chi_{483}(160, \cdot)\) 483.4.h.a 96 1
483.4.i \(\chi_{483}(277, \cdot)\) n/a 176 2
483.4.j \(\chi_{483}(229, \cdot)\) n/a 192 2
483.4.m \(\chi_{483}(137, \cdot)\) n/a 376 2
483.4.n \(\chi_{483}(47, \cdot)\) n/a 352 2
483.4.q \(\chi_{483}(64, \cdot)\) n/a 720 10
483.4.r \(\chi_{483}(34, \cdot)\) n/a 960 10
483.4.u \(\chi_{483}(113, \cdot)\) n/a 1440 10
483.4.v \(\chi_{483}(41, \cdot)\) n/a 1880 10
483.4.y \(\chi_{483}(4, \cdot)\) n/a 1920 20
483.4.bb \(\chi_{483}(26, \cdot)\) n/a 3760 20
483.4.bc \(\chi_{483}(11, \cdot)\) n/a 3760 20
483.4.bf \(\chi_{483}(10, \cdot)\) n/a 1920 20

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(483))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(483)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(483))\)\(^{\oplus 1}\)