Properties

Label 484.1.h
Level $484$
Weight $1$
Character orbit 484.h
Rep. character $\chi_{484}(3,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $8$
Newform subspaces $2$
Sturm bound $66$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 484.h (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 44 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 2 \)
Sturm bound: \(66\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(484, [\chi])\).

Total New Old
Modular forms 56 40 16
Cusp forms 8 8 0
Eisenstein series 48 32 16

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q - 2 q^{4} + 2 q^{5} - 2 q^{9} - 2 q^{16} + 2 q^{20} + 2 q^{26} - 8 q^{34} - 2 q^{36} + 2 q^{37} - 8 q^{45} - 2 q^{49} + 2 q^{53} + 2 q^{58} - 2 q^{64} + 2 q^{80} - 2 q^{81} + 2 q^{82} - 8 q^{89} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(484, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
484.1.h.a 484.h 44.h $4$ $0.242$ \(\Q(\zeta_{10})\) $D_{3}$ \(\Q(\sqrt{-1}) \) None 484.1.b.a \(-1\) \(0\) \(1\) \(0\) \(q-\zeta_{10}q^{2}+\zeta_{10}^{2}q^{4}-\zeta_{10}^{4}q^{5}-\zeta_{10}^{3}q^{8}+\cdots\)
484.1.h.b 484.h 44.h $4$ $0.242$ \(\Q(\zeta_{10})\) $D_{3}$ \(\Q(\sqrt{-1}) \) None 484.1.b.a \(1\) \(0\) \(1\) \(0\) \(q+\zeta_{10}q^{2}+\zeta_{10}^{2}q^{4}-\zeta_{10}^{4}q^{5}+\zeta_{10}^{3}q^{8}+\cdots\)