Properties

Label 486.2.a
Level $486$
Weight $2$
Character orbit 486.a
Rep. character $\chi_{486}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $8$
Sturm bound $162$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(162\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(486))\).

Total New Old
Modular forms 99 12 87
Cusp forms 64 12 52
Eisenstein series 35 0 35

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(5\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(3\)
Minus space\(-\)\(9\)

Trace form

\( 12 q + 12 q^{4} + 6 q^{7} + 6 q^{13} + 12 q^{16} + 6 q^{19} + 12 q^{25} + 6 q^{28} + 6 q^{31} + 6 q^{37} + 6 q^{43} + 18 q^{49} + 6 q^{52} + 18 q^{55} + 18 q^{58} - 48 q^{61} + 12 q^{64} - 48 q^{67} + 18 q^{70}+ \cdots - 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(486))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
486.2.a.a 486.a 1.a $1$ $3.881$ \(\Q\) None 486.2.a.a \(-1\) \(0\) \(-3\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-3q^{5}+2q^{7}-q^{8}+3q^{10}+\cdots\)
486.2.a.b 486.a 1.a $1$ $3.881$ \(\Q\) None 486.2.a.b \(-1\) \(0\) \(0\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}-6q^{11}-q^{13}+\cdots\)
486.2.a.c 486.a 1.a $1$ $3.881$ \(\Q\) None 486.2.a.c \(-1\) \(0\) \(3\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+3q^{5}-4q^{7}-q^{8}-3q^{10}+\cdots\)
486.2.a.d 486.a 1.a $1$ $3.881$ \(\Q\) None 486.2.a.c \(1\) \(0\) \(-3\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-3q^{5}-4q^{7}+q^{8}-3q^{10}+\cdots\)
486.2.a.e 486.a 1.a $1$ $3.881$ \(\Q\) None 486.2.a.b \(1\) \(0\) \(0\) \(-1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}+6q^{11}-q^{13}+\cdots\)
486.2.a.f 486.a 1.a $1$ $3.881$ \(\Q\) None 486.2.a.a \(1\) \(0\) \(3\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+3q^{5}+2q^{7}+q^{8}+3q^{10}+\cdots\)
486.2.a.g 486.a 1.a $3$ $3.881$ \(\Q(\zeta_{18})^+\) None 486.2.a.g \(-3\) \(0\) \(0\) \(6\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-\beta _{2}q^{5}+(2+\beta _{1}-\beta _{2})q^{7}+\cdots\)
486.2.a.h 486.a 1.a $3$ $3.881$ \(\Q(\zeta_{18})^+\) None 486.2.a.g \(3\) \(0\) \(0\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta _{2}q^{5}+(2+\beta _{1}-\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(486))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(486)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(243))\)\(^{\oplus 2}\)