Properties

Label 486.2.c
Level $486$
Weight $2$
Character orbit 486.c
Rep. character $\chi_{486}(163,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $24$
Newform subspaces $8$
Sturm bound $162$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(162\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(486, [\chi])\).

Total New Old
Modular forms 198 24 174
Cusp forms 126 24 102
Eisenstein series 72 0 72

Trace form

\( 24 q - 12 q^{4} - 6 q^{7} - 6 q^{13} - 12 q^{16} + 12 q^{19} - 12 q^{25} + 12 q^{28} - 6 q^{31} + 12 q^{37} - 6 q^{43} - 18 q^{49} - 6 q^{52} + 36 q^{55} - 18 q^{58} + 48 q^{61} + 24 q^{64} + 48 q^{67}+ \cdots + 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(486, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
486.2.c.a 486.c 9.c $2$ $3.881$ \(\Q(\sqrt{-3}) \) None 486.2.a.a \(-1\) \(0\) \(-3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-3\zeta_{6}q^{5}+\cdots\)
486.2.c.b 486.c 9.c $2$ $3.881$ \(\Q(\sqrt{-3}) \) None 486.2.a.b \(-1\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+(1-\zeta_{6})q^{7}+\cdots\)
486.2.c.c 486.c 9.c $2$ $3.881$ \(\Q(\sqrt{-3}) \) None 486.2.a.c \(-1\) \(0\) \(3\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+3\zeta_{6}q^{5}+\cdots\)
486.2.c.d 486.c 9.c $2$ $3.881$ \(\Q(\sqrt{-3}) \) None 486.2.a.c \(1\) \(0\) \(-3\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-3\zeta_{6}q^{5}+(4+\cdots)q^{7}+\cdots\)
486.2.c.e 486.c 9.c $2$ $3.881$ \(\Q(\sqrt{-3}) \) None 486.2.a.b \(1\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+(1-\zeta_{6})q^{7}+\cdots\)
486.2.c.f 486.c 9.c $2$ $3.881$ \(\Q(\sqrt{-3}) \) None 486.2.a.a \(1\) \(0\) \(3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+3\zeta_{6}q^{5}+(-2+\cdots)q^{7}+\cdots\)
486.2.c.g 486.c 9.c $6$ $3.881$ \(\Q(\zeta_{18})\) None 486.2.a.g \(-3\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_1 q^{2}+(\beta_1-1)q^{4}+(\beta_{5}-\beta_{4}+\cdots-\beta_{2})q^{5}+\cdots\)
486.2.c.h 486.c 9.c $6$ $3.881$ \(\Q(\zeta_{18})\) None 486.2.a.g \(3\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta_1 q^{2}+(\beta_1-1)q^{4}+\beta_{4} q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(486, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(486, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 2}\)