Defining parameters
Level: | \( N \) | \(=\) | \( 486 = 2 \cdot 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 486.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(162\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(486, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 198 | 24 | 174 |
Cusp forms | 126 | 24 | 102 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(486, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(486, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(486, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 2}\)